Investigation of the Effects of Various Severe Plastic Deformation Techniques on the Microstructure of Laser Powder Bed Fusion AlSi10Mg Alloy

. 2023 Nov 29 ; 16 (23) : . [epub] 20231129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38068162

Grantová podpora
2021/43/D/ST8/01946 National Science Center

In this paper, we present a complete characterization of the microstructural changes that occur in an LPBF AlSi10Mg alloy subjected to various post-processing methods, including equal-channel angular pressing (ECAP), KoBo extrusion, and multi-axial forging. Kikuchi transmission diffraction and transmission electron microscopy were used to examine the microstructures. Our findings revealed that multi-axis forging produced an extremely fine subgrain structure. KoBo extrusion resulted in a practically dislocation-free microstructure. ECAP processing at temperatures between 100 °C and 200 °C generated moderate grain refinement, with subgrain diameters averaging from 300 nm to 700 nm. The obtained data highlighted the potential of severe plastic deformation as a versatile method for tailoring the microstructure of the AlSi10Mg alloy. The ability to precisely control grain size and dislocation density using specific SPD methods allows for the development of novel materials with ultrafine-grained microstructures that offer the potential for enhanced mechanical and functional properties.

Zobrazit více v PubMed

Votano J., Parham M., Hall L. Hanbook of Aluminum: Volume 2: Alloy Production and Material Manufacturing. CRC Press; Boca Raton, FL, USA: 2004. pp. 1–731.

Chiu T.M., Zhang C., Zhao D., Yadav D., Xie K.Y., Elwany A., Castaneda H. Interface stability of laser powder-bed-fused AlSi12 under simulated atmospheric conditions. Corros. Sci. 2020;175:108861. doi: 10.1016/j.corsci.2020.108861. DOI

Zhou L., Mehta A., Schulz E., McWilliams B., Cho K., Sohn Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018;143:5–17. doi: 10.1016/j.matchar.2018.04.022. DOI

Hyer H., Zhou L., Mehta A., Park S., Huynh T., Song S., Bai Y., Cho K., McWilliams B., Sohn Y. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion. Acta Mater. 2021;208:116698. doi: 10.1016/j.actamat.2021.116698. DOI

Eom Y.S., Park J.M., Choi J.-W., Seong D.-J., Joo H., Jo Y.C., Kim K.T., Yu J.H., Son I. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity. J. Alloys Compd. 2023;956:170348. doi: 10.1016/j.jallcom.2023.170348. DOI

Fite J., Eswarappa Prameela S., Slotwinski J., Weihs T.P. Enhanced mechanical properties by eutectic cells in AlSi10Mg—A promising paradigm for strengthening aluminum in additive manufacturing. Mater. Charact. 2023;204:113179. doi: 10.1016/j.matchar.2023.113179. DOI

Zhao L., Song L., Santos Macías J.G., Zhu Y., Huang M., Simar A., Li Z. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg. Addit. Manuf. 2022;56:102914. doi: 10.1016/j.addma.2022.102914. DOI

Wang P., Rabori A.S., Dong Q., Ravkov L., Balogh L., Fallah V. The role of cellular structure, non-equilibrium eutectic phases and precipitates on quasi-static strengthening mechanisms of as-built AlSi10Mg parts 3D printed via laser powder bed fusion. Mater. Charact. 2023;198:112730. doi: 10.1016/j.matchar.2023.112730. DOI

Snopiński P., Matus K., Tatiček F., Rusz S. Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing. J. Alloys Compd. 2022;918:165817. doi: 10.1016/j.jallcom.2022.165817. DOI

Salandari-Rabori A., Fallah V. Heterogeneity of deformation, shear band formation and work hardening behavior of as-printed AlSi10Mg via laser powder bed fusion. Mater. Sci. Eng. A. 2023;866:144698. doi: 10.1016/j.msea.2023.144698. DOI

Salandari-Rabori A., Diak B.J., Fallah V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion. Mater. Sci. Eng. A. 2022;857:144043. doi: 10.1016/j.msea.2022.144043. DOI

Salandari Rabori A., Fallah V. Room temperature strain rate sensitivity of as-built 3D printed AlSi10Mg by laser powder bed fusion. Mater. Lett. 2022;320:132395. doi: 10.1016/j.matlet.2022.132395. DOI

Fiocchi J., Biffi C.A., Colombo C., Vergani L.M., Tuissi A. Ad Hoc Heat Treatments for Selective Laser Melted Alsi10mg Alloy Aimed at Stress-Relieving and Enhancing Mechanical Performances. JOM. 2020;72:1118–1127. doi: 10.1007/s11837-019-03973-z. DOI

Li D., Qin R., Xu J., Chen B., Niu X. Effect of heat treatment on AlSi10Mg lattice structure manufactured by selective laser melting: Microstructure evolution and compression properties. Mater. Charact. 2022;187:111882. doi: 10.1016/j.matchar.2022.111882. DOI

Hirata T., Kimura T., Nakamoto T. Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys. Mater. Sci. Eng. A. 2020;772:138713. doi: 10.1016/j.msea.2019.138713. DOI

Zhang H., Li C., Yao G., Zhang Y. Hot isostatic pressing of laser powder-bed-fused 304L stainless steel under different temperatures. Int. J. Mech. Sci. 2022;226:107413. doi: 10.1016/j.ijmecsci.2022.107413. DOI

Zhong Y., Liu L., Wikman S., Cui D., Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 2016;470:170–178. doi: 10.1016/j.jnucmat.2015.12.034. DOI

Maamoun A., Elbestawi M., Veldhuis S. Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing. J. Manuf. Mater. Process. 2018;2:40. doi: 10.3390/jmmp2030040. DOI

Santos Macías J.G., Elangeswaran C., Zhao L., Van Hooreweder B., Adrien J., Maire E., Buffière J.-Y., Ludwig W., Jacques P.J., Simar A. Ductilisation and fatigue life enhancement of selective laser melted AlSi10Mg by friction stir processing. Scr. Mater. 2019;170:124–128. doi: 10.1016/j.scriptamat.2019.05.044. DOI

Xing X., Duan X., Jiang T., Wang J., Jiang F. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting. Metals. 2019;9:103. doi: 10.3390/met9010103. DOI

Maleki E., Bagherifard S., Unal O., Jam A., Shao S., Guagliano M., Shamsaei N. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg. Surf. Coat. Technol. 2023;463:129512. doi: 10.1016/j.surfcoat.2023.129512. DOI

Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI

Yusuf S.M., Hoegden M., Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int. J. Adv. Manuf. Technol. 2020;106:4321–4337. doi: 10.1007/s00170-019-04817-5. DOI

Han J.-K., Liu X., Lee I., Kuzminova Y.O., Evlashin S.A., Liss K.-D., Kawasaki M. Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion. Mater. Lett. 2021;302:130364. doi: 10.1016/j.matlet.2021.130364. DOI

Langdon T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A. 2007;462:3–11. doi: 10.1016/j.msea.2006.02.473. DOI

Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungár T., Balogh L. Grain refinement in nanostructured Al-Mg alloys subjected to high pressure torsion. J. Mater. Sci. 2010;45:4659–4664. doi: 10.1007/s10853-010-4604-3. DOI

Reza Toroghinejad M., Ashrafizadeh F., Jamaati R. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083. Mater. Sci. Eng. A. 2013;561:145–151. doi: 10.1016/j.msea.2012.11.010. DOI

Orlov D., Beygelzimer Y., Synkov S., Varyukhin V., Tsuji N., Horita Z. Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion. Mater. Sci. Eng. A. 2009;519:105–111. doi: 10.1016/j.msea.2009.06.005. DOI

Saxl I., Kalousová A., Ilucová L., Sklenička V. Grain and subgrain boundaries in ultrafine-grained materials. Mater. Charact. 2009;60:1163–1167. doi: 10.1016/j.matchar.2009.03.010. DOI

Ebrahimi M., Wang Q., Attarilar S. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Prog. Mater. Sci. 2023;131:101016. doi: 10.1016/j.pmatsci.2022.101016. DOI

Song X., Wang L., Wang R., Liu Y. Effects of annealing on microstructure evolution and mechanical properties of constrained groove pressed pure titanium. Mater. Sci. Eng. A. 2022;831:142245. doi: 10.1016/j.msea.2021.142245. DOI

Zhang L., Ren R., Ren J., Liu Y., Liao W., Li T., Liu C., Wang Q. Effects of cyclic closed-die forging on the microstructural evolution and mechanical properties of SiC/AZ91D nanocomposites. Int. J. Mod. Phys. B. 2022;36:2240066. doi: 10.1142/S0217979222400665. DOI

Muñoz J.A. Hot plastic behavior of an ultrafine-grained aluminum alloy fabricated by laser powder bed fusion and equal channel angular pressing. Superplast. Adv. Mater. 2023;32:330.

Zhang X., Huang L.K., Zhang B., Chen Y.Z., Liu F. Microstructural evolution and strengthening mechanism of an Al–Si–Mg alloy processed by high-pressure torsion with different heat treatments. Mater. Sci. Eng. A. 2020;794:139932. doi: 10.1016/j.msea.2020.139932. DOI

Park J.M., Asghari-Rad P., Zargaran A., Bae J.W., Moon J., Kwon H., Choe J., Yang S., Yu J.-H., Kim H.S. Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta Mater. 2021;221:117426. doi: 10.1016/j.actamat.2021.117426. DOI

Snopiński P., Woźniak A., Pagáč M. Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP) Materials. 2021;14:7598. doi: 10.3390/ma14247598. PubMed DOI PMC

Yaru L., Tiejun M., Tounan J., Bo Z., Le Y., Wenhang Y., Hanguang F. Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg. Mater. Sci. Technol. 2023;39:1223–1236. doi: 10.1080/02670836.2022.2164128. DOI

Prashanth K.G., Scudino S., Klauss H.J., Surreddi K.B., Löber L., Wang Z., Chaubey A.K., Kühn U., Eckert J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A. 2014;590:153–160. doi: 10.1016/j.msea.2013.10.023. DOI

Casati R., Nasab M.H., Coduri M., Tirelli V., Vedani M. Effects of platform pre-heating and thermal-treatment strategies on properties of alsi10mg alloy processed by selective laser melting. Metals. 2018;8:954. doi: 10.3390/met8110954. DOI

Merino J., Ruvalcaba B., Varela J., Arrieta E., Murr L.E., Wicker R.B., Benedict M., Medina F. Multiple, comparative heat treatment and aging schedules for controlling the microstructures and mechanical properties of laser powder bed fusion fabricated AlSi10Mg alloy. J. Mater. Res. Technol. 2021;13:669–685. doi: 10.1016/j.jmrt.2021.04.062. DOI

Girelli L., Tocci M., Conte M., Giovanardi R., Veronesi P., Gelfi M., Pola A. Effect of the T6 heat treatment on corrosion behavior of additive manufactured and gravity cast AlSi10Mg alloy. Mater. Corros. 2019;70:1808–1816. doi: 10.1002/maco.201910890. DOI

Xu J., Brodin H., Peng R.L., Luzin V., Moverare J. Effect of heat treatment temperature on the microstructural evolution of CM247LC superalloy by laser powder bed fusion. Mater. Charact. 2022;185:111742. doi: 10.1016/j.matchar.2022.111742. DOI

Muñoz J.A., Pavlov M., Cheverikin V., Komissarov A., Gromov A. Heterogeneity consequences on the mechanical and microstructural evolution of an AlSi11Cu alloy obtained by selective laser melting. Mater. Charact. 2021;174:110989. doi: 10.1016/j.matchar.2021.110989. DOI

Li Z., Li Z., Tan Z., Xiong D.B., Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int. J. Plast. 2020 doi: 10.1016/j.ijplas.2019.12.003. DOI

Ren J., Wang R., Feng Y., Peng C., Cai Z. Hot deformation behavior and microstructural evolution of as-quenched 7055 Al alloy fabricated by powder hot extrusion. Mater. Charact. 2019;156:109833. doi: 10.1016/j.matchar.2019.109833. DOI

Nikulin I., Kaibyshev R. The Effect of Temperature on Microstructure Evolution in a 7055 Aluminum Alloy Subjected to ECAP. Mater. Sci. Forum. 2012;715–716:317–322. doi: 10.4028/www.scientific.net/MSF.715-716.317. DOI

Snopiński P., Hilšer O., Hajnyš J. Tuning the defects density in additively manufactured fcc aluminium alloy via modifying the cellular structure and post-processing deformation. Mater. Sci. Eng. A. 2023;865:144605. doi: 10.1016/j.msea.2023.144605. DOI

Wu G., Tang J., Wang N., Cao Y., Luo J., Chen Y. Effect of strain rate-induced microstructure on mechanical behavior of dual-phase steel. J. Mater. Res. Technol. 2022;18:2093–2103. doi: 10.1016/j.jmrt.2022.03.123. DOI

Conrad H. Thermally activated deformation of metals. JOM. 1964;16:582–588. doi: 10.1007/BF03378292. DOI

Ben D.D., Ma Y.R., Yang H.J., Meng L.X., Shao X.H., Liu H.Q., Wang S.G., Duan Q.Q., Zhang Z.F. Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A. 2020;798:140109. doi: 10.1016/j.msea.2020.140109. DOI

Liu M., Zheng R., Xiao W., Li J., Li G., Peng Q., Ma C. Bulk nanostructured Al–Si alloy with remarkable improvement in strength and ductility. Scr. Mater. 2021;201:113970. doi: 10.1016/j.scriptamat.2021.113970. DOI

Liu Q., Fang L., Xiong Z., Yang J., Tan Y., Liu Y., Zhang Y., Tan Q., Hao C., Cao L., et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates. Mater. Sci. Eng. A. 2021;822:141704. doi: 10.1016/j.msea.2021.141704. DOI

Zhang X., Zhao J., Kang G., Zaiser M. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study. Int. J. Plast. 2023;163:103553. doi: 10.1016/j.ijplas.2023.103553. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...