Structural and Mechanical Changes of AlMgSi0.5 Alloy during Extrusion by ECAP Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0526.
Slovak Research and Development Agency
VEGA 1/0236/21
Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
35329483
PubMed Central
PMC8952292
DOI
10.3390/ma15062020
PII: ma15062020
Knihovny.cz E-zdroje
- Klíčová slova
- aluminium alloy, intensive plastic deformation method, mechanical properties, microstructure,
- Publikační typ
- časopisecké články MeSH
SPD (several plastic deformations) methods make it possible to obtain an ultrafine-grained structure (UFG) in larger volumes of material and thus improve its mechanical properties. The presented work focuses on the structural and mechanical changes of aluminium alloy AlMgSi0.5 (EN AW 6060) during processing by repeated extrusion through the ECAP rectangular channel. After a four-pass extrusion, the samples' microstructures were observed using an optical microscope, where refinement of the material grains was confirmed. Tensile tests determined the extrusion forces and allowed interpretation of the changes in the mechanical properties of the stressed alloy. The grain size was refined from 28.90 μm to 4.63 μm. A significant improvement in the strength of the material (by 45%) and a significant deterioration in ductility (to 60%) immediately after the first extrusion was confirmed. The third pass through the die appeared to be optimal for the chosen deformation path, while after the fourth pass, micro-cracks appeared, significantly reducing the strength of the material. Based on the measurement results, new analytical equations were formulated to predict the magnitude or intensity of the volumetric and shape deformations of the structural grain size and, in particular, the adequate increase in the strength and yield point of the material.
Zobrazit více v PubMed
Langdon T.G., Furukawa M., Nemoto M., Horita Z. Using equal-channel angular pressing for refining grain size. JOM. 2000;52:30–33. doi: 10.1007/s11837-000-0128-7. DOI
Gupta A., Chandrasekhar B., Saxena K.K. Effect of Equal-channel angular pressing on mechanical properties: An overview. Mater. Today Proc. 2021;45:5602–5607. doi: 10.1016/j.matpr.2021.02.317. DOI
Zhang Q., Li Q., Chen X. Research progress of ultrafine grained magnesium alloy prepared by equal channel angular pressing. Mater. Res. Express. 2021;8:022001. doi: 10.1088/2053-1591/abe062. DOI
Ka U.B., Panemangalorea D.B., Bhatb S. Equal channel angular processing—A modern deforming technique for quality products. In: Davim J.P., Gupta K., editors. Advanced Welding and Deforming. 1st ed. Elsevier; Amsterdam, The Netherlands: 2021. pp. 381–423.
Snopiński P., Woźniak A., Pagáč M. Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP) Materials. 2021;14:7598. doi: 10.3390/ma14247598. PubMed DOI PMC
Frint S., Hockauf M., Frint P., Wagner M.F.X. Scaling up Segal’s principle of equal-channel angular pressing. Mater. Des. 2016;97:502–511. doi: 10.1016/j.matdes.2016.02.067. DOI
Zehetbauer M., Valiev Z.A. Nanomaterials by Severe Plastic Deformation. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2004.
Janeček M., Krajňák T., Stráská J., Čížek J., Lee D.J., Kim H.S., Gubicza J. Microstructure evolution in ultrafine-grained interstitial free steel processed by high pressure torsion. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012055. doi: 10.1088/1757-899X/63/1/012055. DOI
Sanusi K.O., Makinde O.D., Oliver G.J. Equal channel angular pressing technique for the formation of ultra-fine-grained structures. S. Afr. J. Sci. 2012;108:1–7. doi: 10.4102/sajs.v108i9/10.212. DOI
Altan B. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials. Nova Scince; New York, NY, USA: 2006.
Nashith A., Sanjid P., Shamsudheen M., Rasheeque R., Ramis M.K., Shebeer A.R. Effect of equal channel angular pressing (ECAP) on hardness and microstructure of pure aluminum. Int. J. Mater. Eng. 2014;4:119–122.
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Huang Y., Langdon T.G. Advances in ultrafine-grained materials. Mater. Today. 2013;16:85–93. doi: 10.1016/j.mattod.2013.03.004. DOI
Ilucová L., Saxl I., Svoboda M., Sklenička V., Král P. Structure of ECAP aluminium after different number of passes. Image Anal. Stereol. 2007;26:37–43. doi: 10.5566/ias.v26.p37-43. DOI
Gopi K.R., Shivananda Nayaka H., Sahu S. Wear properties of ECAP-processed AM80 magnesium alloy. J. Mater. Eng. Perform. 2017;26:3399–3409. doi: 10.1007/s11665-017-2764-x. DOI
Figueiredo R.B., Cetlin P.R., Langdon T.G. The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 2007;55:4769–4779. doi: 10.1016/j.actamat.2007.04.043. DOI
Nakashima K., Horita Z., Nemoto M., Langdon T.G. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 1998;46:1589–1599. doi: 10.1016/S1359-6454(97)00355-8. DOI
Jha S.K., Balakumar D., Paluchamy R. Experimental analysis of mechanical properties on AA6060 and 6061 aluminum alloys. Int. J. Eng. Res. Appl. 2015;5:47–53.
Wagner M.F.X., Frint P. Formation of bulk-laminated materials by localized deformation during ECAP of an AA6060 aluminum alloy. MATEC Web Conf. 2020;326:08001. doi: 10.1051/matecconf/202032608001. DOI
Karon M., Kopysc A., Adamiak M., Konieczny J. Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method. Arch. Comput. Mater. Sci. Surf. Eng. 2016;80:31–36.
Yulinova A., Nickel D., Frint P., Lampke T. Electrochemical properties of AL-6060 alloy after industrial-scale ECAP. Mater. Sci. 2012;48:191–196. doi: 10.1007/s11003-012-9490-1. DOI
Chung C.S., Kim J.K., Kim H.K., Kim W.J. Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng. A. 2002;337:39–44. doi: 10.1016/S0921-5093(02)00010-2. DOI
Xu C., Furukawa M., Horita Z., Langdon T.G. Developing a superplastic forming capability in nanometals. Solid State Phenom. 2005;101:23–30.f. doi: 10.4028/www.scientific.net/SSP.101-102.23. DOI
Horita Z., Furukawa M., Nemoto M., Barnes A.J., Langdon T.G. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000;48:3633–3640. doi: 10.1016/S1359-6454(00)00182-8. DOI
Islamgaliev R.K., Valiev R.Z. Enhanced Superplasticity of SPD-Produced Nanostructured Metallic Materials. In: Burhanettin A., editor. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials. Nova Science Publisher; New York, NY, USA: 2006. pp. 351–368.
Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng. A. 2021;802:140546. doi: 10.1016/j.msea.2020.140546. DOI
Kamikawa N., Huang X., Tsuji N., Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009;57:4198–4208. doi: 10.1016/j.actamat.2009.05.017. DOI
Tiža J., Kvačkaj T., Lupták M., Poór P. Study of Forces Changes in ECAP Process. Acta Metall. Slovaca Conf. 2010;1:184–187.
Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus. ASTM International; West Conshohocken, PA, USA: 2017.
Harnicarova M., Valicek J., Kušnerová M., Kmec J., Palková Z., Kopal I., Krmela J., Panda A. Study of the influence of the structural grain size on the mechanical properties of technical materials. Mater. Werkst. 2019;50:635–645. doi: 10.1002/mawe.201800177. DOI
Harničárová M., Valíček J., Kušnerová M., Palková Z., Kopal I., Borzan C., Kadnár M., Paulovič S. A New Method of Predicting the Structural and Mechanical Change of Materials during Extrusion by the Method of Multiple Plastic Deformations. Materials. 2021;14:2594. doi: 10.3390/ma14102594. PubMed DOI PMC
Valíček J., Cep R., Rokosz K., Lukianowicz C., Kozak D., Zeleňák M., Koštial P., Hloch S., Harničárová M., Hlaváček P., et al. New way to take control of a structural grain size in the formation of nanomaterials by extrusion. Mater. Werkst. 2012;43:405–411. doi: 10.1002/mawe.201200973. DOI