Structural and Mechanical Changes of AlMgSi0.5 Alloy during Extrusion by ECAP Method

. 2022 Mar 09 ; 15 (6) : . [epub] 20220309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35329483

Grantová podpora
APVV-19-0526. Slovak Research and Development Agency
VEGA 1/0236/21 Ministry of Education, Science, Research and Sport of the Slovak Republic

SPD (several plastic deformations) methods make it possible to obtain an ultrafine-grained structure (UFG) in larger volumes of material and thus improve its mechanical properties. The presented work focuses on the structural and mechanical changes of aluminium alloy AlMgSi0.5 (EN AW 6060) during processing by repeated extrusion through the ECAP rectangular channel. After a four-pass extrusion, the samples' microstructures were observed using an optical microscope, where refinement of the material grains was confirmed. Tensile tests determined the extrusion forces and allowed interpretation of the changes in the mechanical properties of the stressed alloy. The grain size was refined from 28.90 μm to 4.63 μm. A significant improvement in the strength of the material (by 45%) and a significant deterioration in ductility (to 60%) immediately after the first extrusion was confirmed. The third pass through the die appeared to be optimal for the chosen deformation path, while after the fourth pass, micro-cracks appeared, significantly reducing the strength of the material. Based on the measurement results, new analytical equations were formulated to predict the magnitude or intensity of the volumetric and shape deformations of the structural grain size and, in particular, the adequate increase in the strength and yield point of the material.

Zobrazit více v PubMed

Langdon T.G., Furukawa M., Nemoto M., Horita Z. Using equal-channel angular pressing for refining grain size. JOM. 2000;52:30–33. doi: 10.1007/s11837-000-0128-7. DOI

Gupta A., Chandrasekhar B., Saxena K.K. Effect of Equal-channel angular pressing on mechanical properties: An overview. Mater. Today Proc. 2021;45:5602–5607. doi: 10.1016/j.matpr.2021.02.317. DOI

Zhang Q., Li Q., Chen X. Research progress of ultrafine grained magnesium alloy prepared by equal channel angular pressing. Mater. Res. Express. 2021;8:022001. doi: 10.1088/2053-1591/abe062. DOI

Ka U.B., Panemangalorea D.B., Bhatb S. Equal channel angular processing—A modern deforming technique for quality products. In: Davim J.P., Gupta K., editors. Advanced Welding and Deforming. 1st ed. Elsevier; Amsterdam, The Netherlands: 2021. pp. 381–423.

Snopiński P., Woźniak A., Pagáč M. Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP) Materials. 2021;14:7598. doi: 10.3390/ma14247598. PubMed DOI PMC

Frint S., Hockauf M., Frint P., Wagner M.F.X. Scaling up Segal’s principle of equal-channel angular pressing. Mater. Des. 2016;97:502–511. doi: 10.1016/j.matdes.2016.02.067. DOI

Zehetbauer M., Valiev Z.A. Nanomaterials by Severe Plastic Deformation. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2004.

Janeček M., Krajňák T., Stráská J., Čížek J., Lee D.J., Kim H.S., Gubicza J. Microstructure evolution in ultrafine-grained interstitial free steel processed by high pressure torsion. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012055. doi: 10.1088/1757-899X/63/1/012055. DOI

Sanusi K.O., Makinde O.D., Oliver G.J. Equal channel angular pressing technique for the formation of ultra-fine-grained structures. S. Afr. J. Sci. 2012;108:1–7. doi: 10.4102/sajs.v108i9/10.212. DOI

Altan B. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials. Nova Scince; New York, NY, USA: 2006.

Nashith A., Sanjid P., Shamsudheen M., Rasheeque R., Ramis M.K., Shebeer A.R. Effect of equal channel angular pressing (ECAP) on hardness and microstructure of pure aluminum. Int. J. Mater. Eng. 2014;4:119–122.

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI

Huang Y., Langdon T.G. Advances in ultrafine-grained materials. Mater. Today. 2013;16:85–93. doi: 10.1016/j.mattod.2013.03.004. DOI

Ilucová L., Saxl I., Svoboda M., Sklenička V., Král P. Structure of ECAP aluminium after different number of passes. Image Anal. Stereol. 2007;26:37–43. doi: 10.5566/ias.v26.p37-43. DOI

Gopi K.R., Shivananda Nayaka H., Sahu S. Wear properties of ECAP-processed AM80 magnesium alloy. J. Mater. Eng. Perform. 2017;26:3399–3409. doi: 10.1007/s11665-017-2764-x. DOI

Figueiredo R.B., Cetlin P.R., Langdon T.G. The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 2007;55:4769–4779. doi: 10.1016/j.actamat.2007.04.043. DOI

Nakashima K., Horita Z., Nemoto M., Langdon T.G. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 1998;46:1589–1599. doi: 10.1016/S1359-6454(97)00355-8. DOI

Jha S.K., Balakumar D., Paluchamy R. Experimental analysis of mechanical properties on AA6060 and 6061 aluminum alloys. Int. J. Eng. Res. Appl. 2015;5:47–53.

Wagner M.F.X., Frint P. Formation of bulk-laminated materials by localized deformation during ECAP of an AA6060 aluminum alloy. MATEC Web Conf. 2020;326:08001. doi: 10.1051/matecconf/202032608001. DOI

Karon M., Kopysc A., Adamiak M., Konieczny J. Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method. Arch. Comput. Mater. Sci. Surf. Eng. 2016;80:31–36.

Yulinova A., Nickel D., Frint P., Lampke T. Electrochemical properties of AL-6060 alloy after industrial-scale ECAP. Mater. Sci. 2012;48:191–196. doi: 10.1007/s11003-012-9490-1. DOI

Chung C.S., Kim J.K., Kim H.K., Kim W.J. Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng. A. 2002;337:39–44. doi: 10.1016/S0921-5093(02)00010-2. DOI

Xu C., Furukawa M., Horita Z., Langdon T.G. Developing a superplastic forming capability in nanometals. Solid State Phenom. 2005;101:23–30.f. doi: 10.4028/www.scientific.net/SSP.101-102.23. DOI

Horita Z., Furukawa M., Nemoto M., Barnes A.J., Langdon T.G. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000;48:3633–3640. doi: 10.1016/S1359-6454(00)00182-8. DOI

Islamgaliev R.K., Valiev R.Z. Enhanced Superplasticity of SPD-Produced Nanostructured Metallic Materials. In: Burhanettin A., editor. Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials. Nova Science Publisher; New York, NY, USA: 2006. pp. 351–368.

Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng. A. 2021;802:140546. doi: 10.1016/j.msea.2020.140546. DOI

Kamikawa N., Huang X., Tsuji N., Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009;57:4198–4208. doi: 10.1016/j.actamat.2009.05.017. DOI

Tiža J., Kvačkaj T., Lupták M., Poór P. Study of Forces Changes in ECAP Process. Acta Metall. Slovaca Conf. 2010;1:184–187.

Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus. ASTM International; West Conshohocken, PA, USA: 2017.

Harnicarova M., Valicek J., Kušnerová M., Kmec J., Palková Z., Kopal I., Krmela J., Panda A. Study of the influence of the structural grain size on the mechanical properties of technical materials. Mater. Werkst. 2019;50:635–645. doi: 10.1002/mawe.201800177. DOI

Harničárová M., Valíček J., Kušnerová M., Palková Z., Kopal I., Borzan C., Kadnár M., Paulovič S. A New Method of Predicting the Structural and Mechanical Change of Materials during Extrusion by the Method of Multiple Plastic Deformations. Materials. 2021;14:2594. doi: 10.3390/ma14102594. PubMed DOI PMC

Valíček J., Cep R., Rokosz K., Lukianowicz C., Kozak D., Zeleňák M., Koštial P., Hloch S., Harničárová M., Hlaváček P., et al. New way to take control of a structural grain size in the formation of nanomaterials by extrusion. Mater. Werkst. 2012;43:405–411. doi: 10.1002/mawe.201200973. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...