A New Method of Predicting the Structural and Mechanical Change of Materials during Extrusion by the Method of Multiple Plastic Deformations

. 2021 May 16 ; 14 (10) : . [epub] 20210516

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34065770

Grantová podpora
1/0236/21 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

The formulation of the Hall-Petch relationship in the early 1950s has raised immense interest in studying the influence of the grain size of solid materials on their properties. Grain refinement can be achieved through extreme deformation. In the presented study, Equal-Channel Angular Pressing (ECAP) was successfully applied to produce an ultrafine-grained microstructure in a pure commercial Cu of 99.9 wt%. Samples were processed by ECAP at 21 °C for six passes via route A. A new equation of equilibrium that allows the exact determination of the number of extrusions and other technological parameters required to achieve the desired final grain size has been developed. The presented research also deals, in a relatively detailed and comparative way, with the use of ultrasound. In this context, a very close correlation between the process functions of extrusion and the speed of longitudinal ultrasonic waves was confirmed.

Zobrazit více v PubMed

Watanabe T., Tsurekawa S., Zhao X., Zuo L. The Coming of Grain Boundary Engineering in the 21st Century. In: Haldar A., Suwas S., Bhattacharjee D., editors. Microstructure and Texture in Steels: And Other Materials. Springer Science & Business Media; London, UK: 2009. pp. 43–79.

Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI

Segal V. Review: Modes and Processes of Severe Plastic Deformation (SPD) Materials. 2018;11:1175. doi: 10.3390/ma11071175. PubMed DOI PMC

Keshtiban P.M., Behnagh R.A., Alimirzaloo V. Routes Investigation in Equal Channel Multi-angular Pressing Process of UFG Al−3% Mg Alloy Strips. Trans. Indian Inst. Met. 2018;71:659–664. doi: 10.1007/s12666-017-1198-3. DOI

Łyszkowski R., Czujko T., Varin R.A. Multi-axial forging of Fe 3 Al-base intermetallic alloy and its mechanical properties. J. Mater. Sci. 2017;52:2902–2914. doi: 10.1007/s10853-016-0584-2. DOI

Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A. 2016;652:325–352. doi: 10.1016/j.msea.2015.11.074. DOI

Zhou W., Yu J., Lin J., Dean T.A. Manufacturing a curved profile with fine grains and high strength by differential velocity sideways extrusion. Int. J. Mach. Tools Manuf. 2019;140:77–88. doi: 10.1016/j.ijmachtools.2019.03.002. DOI

Zrník J., Kraus L., Prnka T., Šperlink K. Preparation of Ultrafine Grains and Nanocrystalline Metallic Materials by Extreme Plastic Deformation and Their Properties. Repronis; Ostrava, Check Republic: 2007. p. 76.

Segal V.M., Reznikov V.I., Drobyshevskiy A.E., Kopylov V.I. Plastic working of metals by simple shear. Russ. Metal. 1981;1:99–105.

Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI

Valiev R.Z., Krasilnikov N.A., Tsenev N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A. 1991;137:35–40. doi: 10.1016/0921-5093(91)90316-F. DOI

Valiev R.Z., Korznikov A.V., Mulyukov R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A. 1993;186:141–148. doi: 10.1016/0921-5093(93)90717-S. DOI

Sabirov I., Enikeev N.A., Murashkin M.Y., Valiev R.Z. Bulk Nanostructured Materials with Multifunctional Properties. Springer International Publishing; Berlin, Germany: 2015.

Harničárová M., Valíček J., Kušnerová M., Kopal I., Litecká J., Kadnár M., Kmec J., Palková Z. Prediction of shortening and material grain size after extrusion using the ECAP method. Defect Diffus. Forum. 2020;400:91–105. doi: 10.4028/www.scientific.net/DDF.400.91. DOI

Segal V.M. Apparatus and Method for Deformation Processing of Metals, Ceramics, Plastics and Other Materials. 5,400,633. U.S. Patent. 1995 Mar 28;

Stecher G., Thomson P. Improved Channel Processing. No. WO 03/027337. Patent Int. Publication. 2003 Apr 1;

Markušev V.M., Sloboda V.N., Kaibyshev O. A Method for Deformation Processing of Materials and Apparatus for Its Realization. No. 2146571. Russian Patent. 2000

Liu Z.Y., Liang G.X., Wang E.D., Wang Z.R. The effect of cumulative large plastic strain on the structure and properties of a Cu–Zn alloy. Mater. Sci. Eng. A. 1998;242:137–140. doi: 10.1016/S0921-5093(97)00467-X. DOI

Krallics G., Szeles Z., Semenova I.P., Dotsenko T.V., Alexandrov A.I.V. Experimental Investigations of the Al-Mg-Si Alloy Subjected to Equal-Channel Angular Pressing. In: Zehetbauer M., Valiev R.Z., editors. Nanomaterials by Severe Plastic Deformation. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2004. pp. 183–189.

Raab G.I., Krasilnikov N.A., Valiev R.Z. Processing Ultrafine-Grained Copper by ECAP with Controlled Back-Pressure. Ultrafine Grained Materials III; Proceedings of the 2004 TMS Annual Meeting; Charlette, NC, USA. 14–18 March 2004; pp. 137–143.

Ponce-Peña P., López-Chipres E., García-Sánchez E., Escobedo-Bretado M.A., Ochoa-Salazar B.X., González-Lozano M.A. Optimized design of an ECAP die using the finite element method for obtaining nanostructured materials. Adv. Mater. Sci. Eng. 2015;2015:1–8. doi: 10.1155/2015/702548. DOI

Djavanroodi F., Ebrahimi M. Effect of die parameters and material properties in ECAP with parallel channels. Mater. Sci. Eng. A. 2010;527:7593–7599. doi: 10.1016/j.msea.2010.08.022. DOI

Ahmadi F., Farzin M. Investigation of a new route for equal channel angular pressing process using three-dimensional finite element method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014;228:765–774. doi: 10.1177/0954405413510309. DOI

Parshikov R.A., Rudskoy A.I., Zolotov A.M., Tolochko O.V. Technological problems of equal channel angular pressing. Rev. Adv. Mater. Sci. 2013;34:26–36.

Prangnell P.B., Harris C., Roberts S.M. Finite element modelling of equal channel angular extrusion. Scr. Mater. 1997;37:983–989. doi: 10.1016/S1359-6462(97)00192-9. DOI

Tong L.B., Zheng M.Y., Hu X.S., Wu K., Xu S.W., Kamado S., Kojima Y. Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A. 2010;527:4250–4256. doi: 10.1016/j.msea.2010.03.062. DOI

Lee B.S., Cho H. Influence of ECAP routes on the microstructure and mechanical properties of hot extruded 3003 Al alloy. Solid State Phenom. 2007;124:1397–1400. doi: 10.4028/www.scientific.net/SSP.124-126.1397. DOI

Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A. 2001;299:59–67. doi: 10.1016/S0921-5093(00)01411-8. DOI

Gajanan M.N., Narendranath S., Kumar S.S. Influence of ECAP processing routes on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy. AIP Conf. Proc. 2019;2082:030016. (2019, March)

Irfan O.M., Al-Mufadi F., Al-Shataif Y., Djavanroodi F. Effect of Equal Channel Angular Pressing (ECAP) on Erosion-Corrosion of Pure Copper. Appl. Sci. 2017;7:1250. doi: 10.3390/app7121250. DOI

Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002. DOI

Bhargava S., Nigam V., Arora K., Sahai A., Sharma R.S., HansRaj K. An Analysis on the Deformation of Pure Copper during Multi-pass Equal Channel Angular Extrusion. Procedia Mater. Sci. 2014;5:719–725. doi: 10.1016/j.mspro.2014.07.320. DOI

Švec J., Szkandera P., Rusz S., Hilšer O., Petrů J. Refining structure of copper by SPD process. IOP Conf. Ser. Mater. Sci. Eng. 2019;461:1–6. doi: 10.1088/1757-899X/461/1/012073. DOI

Zhang M., Liu L., Liang S., Li J. Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation. Met. Mater. Int. 2020;26:1585–1595. doi: 10.1007/s12540-019-00395-z. DOI

Harnicarova M., Valicek J., Kušnerová M., Kmec J., Palková Z., Kopal I., Krmela J., Panda A. Study of the influence of the structural grain size on the mechanical properties of technical materials. Mater. und Werkst. 2019;50:635–645. doi: 10.1002/mawe.201800177. DOI

Valíček J., Cep R., Rokosz K., Lukianowicz C., Kozak D., Zeleňák M., Koštial P., Hloch S., Harničárová M., Hlaváček P., et al. New way to take control of a structural grain size in the formation of nanomaterials by extrusion. Mater. und Werkst. 2012;43:405–411. doi: 10.1002/mawe.201200973. DOI

Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9,073,175. U.S. Patent. 2015 Jul 7;

Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials Kawj. CZ 305514 B6. Czech Republic Patent. 2010 Jul 23;

Chang C.P., Sun P.L., Kao P.W. Deformation induced grain boundaries in commercially pure aluminium. Acta Mater. 2000;48:3377–3385. doi: 10.1016/S1359-6454(00)00138-5. DOI

Cheng G.M., Jian W.W., Xu W.Z., Yuan H., Millett P.C., Zhu Y.T. Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater. Res. Lett. 2013;1:26–31. doi: 10.1080/21663831.2012.739580. DOI

Valíček J., Harničárová M., Öchsner A., Hutyrová Z., Kušnerová M., Tozan H., Michenka V., Šepelák V., Mita’ D., Zajac J. Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials. 2015;8:7401–7422. doi: 10.3390/ma8115385. PubMed DOI PMC

Valíček J., Czán A., Harničárová M., Šajgalík M., Kušnerová M., Czánová T., Kopal I., Gombár M., Kmec J., Šafář M. A new way of identifying, predicting and regulating residual stress after chip-forming machining. Int. J. Mech. Sci. 2019;155:343–359. doi: 10.1016/j.ijmecsci.2019.03.007. DOI

Kvačkaj T., Kočiško R., Besterci M., Donič T., Pokorný I., Kuskulič T., Sülleiová K., Molnárová M., Kováčová M., Kvačkaj M. Influence of SPD by ECAP on Cu Properties. Mater. Sci. Forum. 2008;584–586:310–314. doi: 10.4028/www.scientific.net/MSF.584-586.310. DOI

Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng. A. 2021;802:140546. doi: 10.1016/j.msea.2020.140546. DOI

Greger M., Kawulok R. Processing of Commercial Purity Titanium by ECAP Using a 90 Degrees Die at 350 °C Temperature. Hutn. Listy. 2017;6:74–78.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural and Mechanical Changes of AlMgSi0.5 Alloy during Extrusion by ECAP Method

. 2022 Mar 09 ; 15 (6) : . [epub] 20220309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...