A New Method of Predicting the Structural and Mechanical Change of Materials during Extrusion by the Method of Multiple Plastic Deformations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0236/21
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
PubMed
34065770
PubMed Central
PMC8156885
DOI
10.3390/ma14102594
PII: ma14102594
Knihovny.cz E-zdroje
- Klíčová slova
- ECAP, copper, extrusion, grain size, structural and mechanical changes,
- Publikační typ
- časopisecké články MeSH
The formulation of the Hall-Petch relationship in the early 1950s has raised immense interest in studying the influence of the grain size of solid materials on their properties. Grain refinement can be achieved through extreme deformation. In the presented study, Equal-Channel Angular Pressing (ECAP) was successfully applied to produce an ultrafine-grained microstructure in a pure commercial Cu of 99.9 wt%. Samples were processed by ECAP at 21 °C for six passes via route A. A new equation of equilibrium that allows the exact determination of the number of extrusions and other technological parameters required to achieve the desired final grain size has been developed. The presented research also deals, in a relatively detailed and comparative way, with the use of ultrasound. In this context, a very close correlation between the process functions of extrusion and the speed of longitudinal ultrasonic waves was confirmed.
Zobrazit více v PubMed
Watanabe T., Tsurekawa S., Zhao X., Zuo L. The Coming of Grain Boundary Engineering in the 21st Century. In: Haldar A., Suwas S., Bhattacharjee D., editors. Microstructure and Texture in Steels: And Other Materials. Springer Science & Business Media; London, UK: 2009. pp. 43–79.
Hansen N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002. DOI
Segal V. Review: Modes and Processes of Severe Plastic Deformation (SPD) Materials. 2018;11:1175. doi: 10.3390/ma11071175. PubMed DOI PMC
Keshtiban P.M., Behnagh R.A., Alimirzaloo V. Routes Investigation in Equal Channel Multi-angular Pressing Process of UFG Al−3% Mg Alloy Strips. Trans. Indian Inst. Met. 2018;71:659–664. doi: 10.1007/s12666-017-1198-3. DOI
Łyszkowski R., Czujko T., Varin R.A. Multi-axial forging of Fe 3 Al-base intermetallic alloy and its mechanical properties. J. Mater. Sci. 2017;52:2902–2914. doi: 10.1007/s10853-016-0584-2. DOI
Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A. 2016;652:325–352. doi: 10.1016/j.msea.2015.11.074. DOI
Zhou W., Yu J., Lin J., Dean T.A. Manufacturing a curved profile with fine grains and high strength by differential velocity sideways extrusion. Int. J. Mach. Tools Manuf. 2019;140:77–88. doi: 10.1016/j.ijmachtools.2019.03.002. DOI
Zrník J., Kraus L., Prnka T., Šperlink K. Preparation of Ultrafine Grains and Nanocrystalline Metallic Materials by Extreme Plastic Deformation and Their Properties. Repronis; Ostrava, Check Republic: 2007. p. 76.
Segal V.M., Reznikov V.I., Drobyshevskiy A.E., Kopylov V.I. Plastic working of metals by simple shear. Russ. Metal. 1981;1:99–105.
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Valiev R.Z., Krasilnikov N.A., Tsenev N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A. 1991;137:35–40. doi: 10.1016/0921-5093(91)90316-F. DOI
Valiev R.Z., Korznikov A.V., Mulyukov R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A. 1993;186:141–148. doi: 10.1016/0921-5093(93)90717-S. DOI
Sabirov I., Enikeev N.A., Murashkin M.Y., Valiev R.Z. Bulk Nanostructured Materials with Multifunctional Properties. Springer International Publishing; Berlin, Germany: 2015.
Harničárová M., Valíček J., Kušnerová M., Kopal I., Litecká J., Kadnár M., Kmec J., Palková Z. Prediction of shortening and material grain size after extrusion using the ECAP method. Defect Diffus. Forum. 2020;400:91–105. doi: 10.4028/www.scientific.net/DDF.400.91. DOI
Segal V.M. Apparatus and Method for Deformation Processing of Metals, Ceramics, Plastics and Other Materials. 5,400,633. U.S. Patent. 1995 Mar 28;
Stecher G., Thomson P. Improved Channel Processing. No. WO 03/027337. Patent Int. Publication. 2003 Apr 1;
Markušev V.M., Sloboda V.N., Kaibyshev O. A Method for Deformation Processing of Materials and Apparatus for Its Realization. No. 2146571. Russian Patent. 2000
Liu Z.Y., Liang G.X., Wang E.D., Wang Z.R. The effect of cumulative large plastic strain on the structure and properties of a Cu–Zn alloy. Mater. Sci. Eng. A. 1998;242:137–140. doi: 10.1016/S0921-5093(97)00467-X. DOI
Krallics G., Szeles Z., Semenova I.P., Dotsenko T.V., Alexandrov A.I.V. Experimental Investigations of the Al-Mg-Si Alloy Subjected to Equal-Channel Angular Pressing. In: Zehetbauer M., Valiev R.Z., editors. Nanomaterials by Severe Plastic Deformation. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2004. pp. 183–189.
Raab G.I., Krasilnikov N.A., Valiev R.Z. Processing Ultrafine-Grained Copper by ECAP with Controlled Back-Pressure. Ultrafine Grained Materials III; Proceedings of the 2004 TMS Annual Meeting; Charlette, NC, USA. 14–18 March 2004; pp. 137–143.
Ponce-Peña P., López-Chipres E., García-Sánchez E., Escobedo-Bretado M.A., Ochoa-Salazar B.X., González-Lozano M.A. Optimized design of an ECAP die using the finite element method for obtaining nanostructured materials. Adv. Mater. Sci. Eng. 2015;2015:1–8. doi: 10.1155/2015/702548. DOI
Djavanroodi F., Ebrahimi M. Effect of die parameters and material properties in ECAP with parallel channels. Mater. Sci. Eng. A. 2010;527:7593–7599. doi: 10.1016/j.msea.2010.08.022. DOI
Ahmadi F., Farzin M. Investigation of a new route for equal channel angular pressing process using three-dimensional finite element method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014;228:765–774. doi: 10.1177/0954405413510309. DOI
Parshikov R.A., Rudskoy A.I., Zolotov A.M., Tolochko O.V. Technological problems of equal channel angular pressing. Rev. Adv. Mater. Sci. 2013;34:26–36.
Prangnell P.B., Harris C., Roberts S.M. Finite element modelling of equal channel angular extrusion. Scr. Mater. 1997;37:983–989. doi: 10.1016/S1359-6462(97)00192-9. DOI
Tong L.B., Zheng M.Y., Hu X.S., Wu K., Xu S.W., Kamado S., Kojima Y. Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A. 2010;527:4250–4256. doi: 10.1016/j.msea.2010.03.062. DOI
Lee B.S., Cho H. Influence of ECAP routes on the microstructure and mechanical properties of hot extruded 3003 Al alloy. Solid State Phenom. 2007;124:1397–1400. doi: 10.4028/www.scientific.net/SSP.124-126.1397. DOI
Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A. 2001;299:59–67. doi: 10.1016/S0921-5093(00)01411-8. DOI
Gajanan M.N., Narendranath S., Kumar S.S. Influence of ECAP processing routes on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy. AIP Conf. Proc. 2019;2082:030016. (2019, March)
Irfan O.M., Al-Mufadi F., Al-Shataif Y., Djavanroodi F. Effect of Equal Channel Angular Pressing (ECAP) on Erosion-Corrosion of Pure Copper. Appl. Sci. 2017;7:1250. doi: 10.3390/app7121250. DOI
Valiev R.Z., Alexandrov I.V., Zhu Y.T., Lowe T.C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002. DOI
Bhargava S., Nigam V., Arora K., Sahai A., Sharma R.S., HansRaj K. An Analysis on the Deformation of Pure Copper during Multi-pass Equal Channel Angular Extrusion. Procedia Mater. Sci. 2014;5:719–725. doi: 10.1016/j.mspro.2014.07.320. DOI
Švec J., Szkandera P., Rusz S., Hilšer O., Petrů J. Refining structure of copper by SPD process. IOP Conf. Ser. Mater. Sci. Eng. 2019;461:1–6. doi: 10.1088/1757-899X/461/1/012073. DOI
Zhang M., Liu L., Liang S., Li J. Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation. Met. Mater. Int. 2020;26:1585–1595. doi: 10.1007/s12540-019-00395-z. DOI
Harnicarova M., Valicek J., Kušnerová M., Kmec J., Palková Z., Kopal I., Krmela J., Panda A. Study of the influence of the structural grain size on the mechanical properties of technical materials. Mater. und Werkst. 2019;50:635–645. doi: 10.1002/mawe.201800177. DOI
Valíček J., Cep R., Rokosz K., Lukianowicz C., Kozak D., Zeleňák M., Koštial P., Hloch S., Harničárová M., Hlaváček P., et al. New way to take control of a structural grain size in the formation of nanomaterials by extrusion. Mater. und Werkst. 2012;43:405–411. doi: 10.1002/mawe.201200973. DOI
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9,073,175. U.S. Patent. 2015 Jul 7;
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials Kawj. CZ 305514 B6. Czech Republic Patent. 2010 Jul 23;
Chang C.P., Sun P.L., Kao P.W. Deformation induced grain boundaries in commercially pure aluminium. Acta Mater. 2000;48:3377–3385. doi: 10.1016/S1359-6454(00)00138-5. DOI
Cheng G.M., Jian W.W., Xu W.Z., Yuan H., Millett P.C., Zhu Y.T. Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater. Res. Lett. 2013;1:26–31. doi: 10.1080/21663831.2012.739580. DOI
Valíček J., Harničárová M., Öchsner A., Hutyrová Z., Kušnerová M., Tozan H., Michenka V., Šepelák V., Mita’ D., Zajac J. Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials. 2015;8:7401–7422. doi: 10.3390/ma8115385. PubMed DOI PMC
Valíček J., Czán A., Harničárová M., Šajgalík M., Kušnerová M., Czánová T., Kopal I., Gombár M., Kmec J., Šafář M. A new way of identifying, predicting and regulating residual stress after chip-forming machining. Int. J. Mech. Sci. 2019;155:343–359. doi: 10.1016/j.ijmecsci.2019.03.007. DOI
Kvačkaj T., Kočiško R., Besterci M., Donič T., Pokorný I., Kuskulič T., Sülleiová K., Molnárová M., Kováčová M., Kvačkaj M. Influence of SPD by ECAP on Cu Properties. Mater. Sci. Forum. 2008;584–586:310–314. doi: 10.4028/www.scientific.net/MSF.584-586.310. DOI
Alawadhi M.Y., Sabbaghianrad S., Huang Y., Langdon T.G. Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng. A. 2021;802:140546. doi: 10.1016/j.msea.2020.140546. DOI
Greger M., Kawulok R. Processing of Commercial Purity Titanium by ECAP Using a 90 Degrees Die at 350 °C Temperature. Hutn. Listy. 2017;6:74–78.
Structural and Mechanical Changes of AlMgSi0.5 Alloy during Extrusion by ECAP Method