Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28793645
PubMed Central
PMC5458897
DOI
10.3390/ma8115385
PII: ma8115385
Knihovny.cz E-zdroje
- Klíčová slova
- abrasive waterjet cutting, deformation, mechanical equivalents, plasticity, surface topography,
- Publikační typ
- časopisecké články MeSH
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Faculty of Manufacturing Technologies of TUKE with a seat in Prešov Prešov 080 01 Slovakia
Griffith School of Engineering Griffith University Southport Queensland 4214 Australia
Institute of Nanotechnology Karlsruhe Institute of Technology 76344Eggenstein Leopoldshafen Germany
Laboratory of Mechanical Properties VÚHŽ 739 51 Dobrá Czech Republic
Nanotechnology Centre VŠB Technical University of Ostrava 708 33 Ostrava Czech Republic
Zobrazit více v PubMed
Brünig M., Gerke S., Hagenbrock V. Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int. J. Plast. 2014;63:49–63. doi: 10.1016/j.ijplas.2014.04.007. DOI
Popova E., Staraselski Y., Brahme A., Mishra R.K., Inal K. Coupled crystal plasticity-Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 2015;66:85–102. doi: 10.1016/j.ijplas.2014.04.008. DOI
Krempl E. Relaxation behavior and modeling. Int. J. Plast. 2001;17:1419–1436. doi: 10.1016/S0749-6419(00)00092-9. DOI
Drar H., Svensson I.L. Characterization of tensile properties and microstructures in directionally solidified Al–Si alloys using linear roughness index. Mater. Charact. 2006;57:244–258. doi: 10.1016/j.matchar.2006.01.020. DOI
Cooreman S., Lecompte D., Sol H., Vantomme J., Debruyne D. Identification of mechanical material behavior through inverse modeling and DIC. Exp. Mech. 2008;48:421–433. doi: 10.1007/s11340-007-9094-0. DOI
Green R.E., editor. Nondestructive Characterization of Materials VIII. Springer Science & Business Media; New York, NY, USA: 2012.
Bowman K.J. Mechanical Behavior of Materials. John Willey & Sons; Hoboken, NJ, USA: 2004.
Hibbeler R.C. Statics and Mechanics of Materials. 4th ed. Prentice Hall; Upper Saddle River, NJ, USA: 2013.
Arasaratnam P., Sivakumaran K.S., Tait M.J. True stress-true strain models for structural steel elements. ISRN Civil Eng. 2011;2011:1–11. doi: 10.5402/2011/656401. DOI
Dumoulin S., Tabourot L., Chappuis C., Vacher P., Arrieux R. Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. J. Mater. Process. Technol. 2003;133:79–83. doi: 10.1016/S0924-0136(02)00247-9. DOI
Hertzberg R.W. Deformation and Fracture Mechanics of Engineering Materials. 3rd ed. Wiley; New York, NY, USA: 1989.
McDowell D.L. Modelling and experiments in plasticity. Int. J. Plast. 2000;37:293–309.
Lentz M., Klaus M., Beyerlein I.J., Zecevic M., Reimers W., Knezevic M. In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg–Li–(Al) alloys: An uncommon tension-compression asymmetry. Acta Mater. 2015;86:254–268. doi: 10.1016/j.actamat.2014.12.003. DOI
Leblond J.B., Devaux J., Devaux J.C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases. Int. J. Plast. 1989;5:551–572. doi: 10.1016/0749-6419(89)90001-6. DOI
Knezevic M., Levinson A., Harris R., Mishra R.K., Doherty R.D., Kalidindi S.R. Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 2010;58:6230–6242. doi: 10.1016/j.actamat.2010.07.041. DOI
Hashish M. A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI
Hashish M. A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI
Hashish M. Optimization factors in abrasive-waterjet machining. J. Manuf. Sci. Eng. 1991;113:29–37. doi: 10.1115/1.2899619. DOI
Vikram G., Babu N.R. Modelling and analysis of abrasive water jet cut surface topography. Int. J. Mach. Tools Manuf. 2002;42:1345–1354. doi: 10.1016/S0890-6955(02)00064-0. DOI
Kang C., Liu H. Small-scale morphological features on a solid surface processed by high-pressure abrasive water jet. Materials. 2013;6:3514–3529. doi: 10.3390/ma6083514. PubMed DOI PMC
Institute of Geonics AS CR, V.V.I. Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;
Brillová K., Ohlídal M., Valíček J., Hloch S., Kozak D., Ivandić Ž. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques. Metalurgija. 2012;51:39–42.
Valíček J., Držík M., Hryniewicz T., Harničárová M., Rokosz K., Kušnerová M., Barčová K., Bražina D. Non-contact method for surface roughness measurement after machining. Meas. Sci. Rev. 2012;12:184–188. doi: 10.2478/v10048-012-0028-3. DOI
Whitehouse D.J. Surface metrology. Meas. Sci. Technol. 1997;8:955–972. doi: 10.1088/0957-0233/8/9/002. DOI
Griffiths B. Manufacturing Surface Technology: Surface Integrity and Functional Performance. Penton Press; London, UK: 2001.
Lu C. Study on prediction of surface quality in machining process. J. Mater. Process. Technol. 2008;205:439–450. doi: 10.1016/j.jmatprotec.2007.11.270. DOI
Hloch S., Valíček J. Topographical anomaly on surfaces created by abrasive waterjet. Int. J. Adv. Manuf. Technol. 2012;59:593–604. doi: 10.1007/s00170-011-3511-3. DOI
Hloch S., Valíček J. Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int. J. Surface Sci. Eng. 2011;5:152–168. doi: 10.1504/IJSURFSE.2011.041399. DOI
Harničárová M., Valíček J., Öchsner A., Grznárik R., Kušnerová M., Neugebauer J., Kozak D. Predicting residual and flow stresses from surface topography created by laser cutting technology. Opt. Laser Technol. 2013;52:21–29. doi: 10.1016/j.optlastec.2013.03.024. DOI
Moosbrugger C. Atlas of Stress Strain Curves. 2nd ed. ASM International; Materials Park, OH, USA: 2002. Representation of Stress-Strain Behavior.
Identification of Upper and Lower Level Yield Strength in Materials