Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

. 2015 Nov 03 ; 8 (11) : 7401-7422. [epub] 20151103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28793645

The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

Zobrazit více v PubMed

Brünig M., Gerke S., Hagenbrock V. Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int. J. Plast. 2014;63:49–63. doi: 10.1016/j.ijplas.2014.04.007. DOI

Popova E., Staraselski Y., Brahme A., Mishra R.K., Inal K. Coupled crystal plasticity-Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 2015;66:85–102. doi: 10.1016/j.ijplas.2014.04.008. DOI

Krempl E. Relaxation behavior and modeling. Int. J. Plast. 2001;17:1419–1436. doi: 10.1016/S0749-6419(00)00092-9. DOI

Drar H., Svensson I.L. Characterization of tensile properties and microstructures in directionally solidified Al–Si alloys using linear roughness index. Mater. Charact. 2006;57:244–258. doi: 10.1016/j.matchar.2006.01.020. DOI

Cooreman S., Lecompte D., Sol H., Vantomme J., Debruyne D. Identification of mechanical material behavior through inverse modeling and DIC. Exp. Mech. 2008;48:421–433. doi: 10.1007/s11340-007-9094-0. DOI

Green R.E., editor. Nondestructive Characterization of Materials VIII. Springer Science & Business Media; New York, NY, USA: 2012.

Bowman K.J. Mechanical Behavior of Materials. John Willey & Sons; Hoboken, NJ, USA: 2004.

Hibbeler R.C. Statics and Mechanics of Materials. 4th ed. Prentice Hall; Upper Saddle River, NJ, USA: 2013.

Arasaratnam P., Sivakumaran K.S., Tait M.J. True stress-true strain models for structural steel elements. ISRN Civil Eng. 2011;2011:1–11. doi: 10.5402/2011/656401. DOI

Dumoulin S., Tabourot L., Chappuis C., Vacher P., Arrieux R. Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. J. Mater. Process. Technol. 2003;133:79–83. doi: 10.1016/S0924-0136(02)00247-9. DOI

Hertzberg R.W. Deformation and Fracture Mechanics of Engineering Materials. 3rd ed. Wiley; New York, NY, USA: 1989.

McDowell D.L. Modelling and experiments in plasticity. Int. J. Plast. 2000;37:293–309.

Lentz M., Klaus M., Beyerlein I.J., Zecevic M., Reimers W., Knezevic M. In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg–Li–(Al) alloys: An uncommon tension-compression asymmetry. Acta Mater. 2015;86:254–268. doi: 10.1016/j.actamat.2014.12.003. DOI

Leblond J.B., Devaux J., Devaux J.C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases. Int. J. Plast. 1989;5:551–572. doi: 10.1016/0749-6419(89)90001-6. DOI

Knezevic M., Levinson A., Harris R., Mishra R.K., Doherty R.D., Kalidindi S.R. Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 2010;58:6230–6242. doi: 10.1016/j.actamat.2010.07.041. DOI

Hashish M. A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI

Hashish M. A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI

Hashish M. Optimization factors in abrasive-waterjet machining. J. Manuf. Sci. Eng. 1991;113:29–37. doi: 10.1115/1.2899619. DOI

Vikram G., Babu N.R. Modelling and analysis of abrasive water jet cut surface topography. Int. J. Mach. Tools Manuf. 2002;42:1345–1354. doi: 10.1016/S0890-6955(02)00064-0. DOI

Kang C., Liu H. Small-scale morphological features on a solid surface processed by high-pressure abrasive water jet. Materials. 2013;6:3514–3529. doi: 10.3390/ma6083514. PubMed DOI PMC

Institute of Geonics AS CR, V.V.I. Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;

Brillová K., Ohlídal M., Valíček J., Hloch S., Kozak D., Ivandić Ž. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques. Metalurgija. 2012;51:39–42.

Valíček J., Držík M., Hryniewicz T., Harničárová M., Rokosz K., Kušnerová M., Barčová K., Bražina D. Non-contact method for surface roughness measurement after machining. Meas. Sci. Rev. 2012;12:184–188. doi: 10.2478/v10048-012-0028-3. DOI

Whitehouse D.J. Surface metrology. Meas. Sci. Technol. 1997;8:955–972. doi: 10.1088/0957-0233/8/9/002. DOI

Griffiths B. Manufacturing Surface Technology: Surface Integrity and Functional Performance. Penton Press; London, UK: 2001.

Lu C. Study on prediction of surface quality in machining process. J. Mater. Process. Technol. 2008;205:439–450. doi: 10.1016/j.jmatprotec.2007.11.270. DOI

Hloch S., Valíček J. Topographical anomaly on surfaces created by abrasive waterjet. Int. J. Adv. Manuf. Technol. 2012;59:593–604. doi: 10.1007/s00170-011-3511-3. DOI

Hloch S., Valíček J. Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int. J. Surface Sci. Eng. 2011;5:152–168. doi: 10.1504/IJSURFSE.2011.041399. DOI

Harničárová M., Valíček J., Öchsner A., Grznárik R., Kušnerová M., Neugebauer J., Kozak D. Predicting residual and flow stresses from surface topography created by laser cutting technology. Opt. Laser Technol. 2013;52:21–29. doi: 10.1016/j.optlastec.2013.03.024. DOI

Moosbrugger C. Atlas of Stress Strain Curves. 2nd ed. ASM International; Materials Park, OH, USA: 2002. Representation of Stress-Strain Behavior.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...