Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
U54 HD083091
NICHD NIH HHS - United States
P50 HD103524
NICHD NIH HHS - United States
UM1 HG006542
NHGRI NIH HHS - United States
MR/M014568/1
Medical Research Council - United Kingdom
MR/M01326X/1
Medical Research Council - United Kingdom
R01 MH101221
NIMH NIH HHS - United States
PubMed
31417602
PubMed Central
PMC6681681
DOI
10.3389/fgene.2019.00611
Knihovny.cz E-zdroje
- Klíčová slova
- Faces, data protection, data sharing, patient information, phenotyping, rare disease,
- Publikační typ
- časopisecké články MeSH
The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.
Alberta Children's Hospital Research Institute Calgary AB Canada
Big Data Institute University of Oxford Oxford United Kingdom
Center for Human Genetics University Hospitals Leuven University of Leuven Leuven Belgium
Centre for Population Health Research Curtin University of Technology Perth WA Australia
CHU Nantes Service de Génétique Médicale Nantes France
Department of Clinical Genetics Maastricht University Medical Center Maastricht Netherlands
Department of Clinical Neurosciences Western General Hospital Edinburgh United Kingdom
Department of Genetics King Faisal Specialist Hospital and Research Center Riyadh Saudi Arabia
Department of Genome Science University of Washington School of Medicine Seattle WA United States
Department of Human Genetics Radboud University Medical Center Nijmegen Netherlands
Department of Medical Genetics University and University Hospital Antwerp Antwerp Belgium
Department of Medical Genetics University of Antwerp Antwerp Belgium
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX United States
Department of Paediatrics and Neonates Fiona Stanley Hospital Perth WA Australia
Ethox Centre Nuffield Department of Population Health University of Oxford Oxford United Kingdom
Genetic Services of Western Australia King Edward Memorial Hospital Subiaco WA Australia
Great Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
Howard Hughes Medical Institute University of Washington Seattle WA United States
Hunter Genetics Waratah NSW Australia
Imagine Institute Paris France
Institute for Biomedical Engineering University of Oxford Oxford United Kingdom
Laboratorio Chamoles Errores Congénitos del Metabolismo Buenos Aires Argentina
McKusick Nathans Institute of Genetic Medicine Johns Hopkins University Baltimore MD United States
National Organization for Rare Disorders Danbury CT United States
Nuffield Department of Women's and Reproductive Health University of Oxford Oxford United Kingdom
Oasi Research Institute IRCCS Troina Italy
Oregon Health and Science University Portland OR United States
Oxford Centre for Genomic Medicine Oxford United Kingdom
Princess Máxima Center for Pediatric Oncology Utrecht Netherlands
Sir Walter Murdoch School of Policy and International Affairs Murdoch University
Spatial Sciences Science and Engineering Curtin University Perth WA Australia
The Garvan Institute Sydney NSW Australia
The Jackson Laboratory Farmington CT United States
Wellcome Centre for Ethics and Humanities University of Oxford Oxford United Kingdom
Wellcome Trust Sanger Institute Hinxton Cambridge United Kingdom
Zobrazit více v PubMed
Adachi T., Kawamura K., Furusawa Y., Nishizaki Y., Imanishi N., Umehara S., et al. (2017). Japan’s Initiative on Rare and Undiagnosed Diseases (IRUD): towards an end to the diagnostic odyssey. Eur. J. Hum. Genet. 25, 1025. 10.1038/ejhg.2017.106 PubMed DOI PMC
Akle S., Chun S., Jordan D. M., Cassa C. A. (2015). Mitigating false-positive associations in rare disease gene discovery. Hum. Mutat. 36 (10), 998–1003. 10.1002/humu.22847 PubMed DOI PMC
Ansari M., Poke G., Ferry Q., Williamson K., Aldridge R., Meynert A. M., et al. (2014). Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J. Med. Genet. 51 (10), 659–668. 10.1136/jmedgenet-2014-102573 PubMed DOI PMC
Balliu B., Würtz R. P., Horsthemke B., Wieczorek D., Böhringer S. (2014). Classification and visualization based on derived image features: application to genetic syndromes. PLoS One 9 (11), e109033. 10.1371/journal.pone.0109033 PubMed DOI PMC
Basel-Vanagaite L., Wolf L., Orin M., Larizza L., Gervasini C., Krantz I. D., et al. (2016). Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. Clin. Genet. 89 (5), 557–563. 10.1111/cge.12716 PubMed DOI
Baynam G., Bauskis A., Pachter N., Schofield L., Verhoef H., Palmer R. L., et al. (2017). 3-Dimensional facial analysis—facing precision public health. Front. Public Health 5, 31. 10.3389/fpubh.2017.00031 PubMed DOI PMC
Baynam G., Pachter N., McKenzie F., Townshend S., Slee J., Kiraly-Borri C., et al. (2016). The rare and undiagnosed diseases diagnostic service—application of massively parallel sequencing in a state-wide clinical service. Orphanet J. Rare Dis. 11 (1),1–7. 10.1186/s13023-016-0462-7 PubMed DOI PMC
Baynam G. S., Walters M., Dawkins H., Bellgard M., Halber A. R., Claes P. (2013). Objective monitoring of MTOR inhibitor therapy by three-dimensional facial analysis. Twin Res. Hum. Genet. 16 (04), 840–44. 10.1017/thg.2013.49 PubMed DOI
Baynam G., Walters M., Claes P., Kung S., LeSouef P., Dawkins H., et al. (2013). The facial evolution: looking backward and moving forward. Hum. Mutat. 34 (1), 14–22. 10.1002/humu.22219 PubMed DOI
Bengani H., Handley M., Alvi M., Ibitoye R., Lees M., Lynch S. A., et al. (2017). Clinical and molecular consequences of disease-associated de novo mutations in SATB2. Genet. Med. 19 (8), 900–908. 10.1038/gim.2016.211 PubMed DOI PMC
Bone W. P., Washington N. L., Buske O. J., Adams D. R., Davis J., Draper D., et al. (2016). Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency. Genet. Med. 18 (6), 608–617. 10.1038/gim.2015.137 PubMed DOI PMC
Boycott K. M., Rath A., Chong J. X., Hartley T., Alkuraya F. S., Baynam G., et al. (2017). International cooperation to enable the diagnosis of all rare geneticd iseases. Am. J. Hum. Genet. 100 (5), 695–705. 10.1016/j.ajhg.2017.04.003 PubMed DOI PMC
Buske O. J., Girdea M., Dumitriu S., Gallinger B., Hartley T., Trang H., et al. (2015. a). PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum. Mutat. 36 (10), 931–940. 10.1002/humu.22851 PubMed DOI PMC
Buske O. J., Schiettecatte F., Hutton B., Dumitriu S., Misyura A., Huang L., et al. (2015. b). The Matchmaker Exchange API: automating patient matching through the exchange of structured phenotypic and genotypic profiles. Hum. Mutat. 36 (10), 922–927. 10.1002/humu.22850 PubMed DOI PMC
Caulfield M., Davies J., Dennys M., Elbahy L., Fowler T., Hill S., et al. 2017. “The 100,000 Genomes Project Protocol.” 10.6084/m9.figshare.4530893.v2. DOI
Chong J. X., Buckingham K. J., Jhangiani S. N., Boehm C., Sobreira N., Smith J. D., et al. (2015). The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am. J. Hum. Genet. 97 (2), 199–215. 10.1016/j.ajhg.2015.06.009 PubMed DOI PMC
Collins F. S., Varmus H. (2015). A new initiative on precision medicine. N. Engl. J. Med. 372 (9), 793–795. 10.1056/NEJMp1500523 PubMed DOI PMC
de Montjoye Y.-A., Radaelli L., Singh V. K., Pentland A. S. (2015). Unique in the shopping mall: on the reidentifiability of credit card metadata. Science 347 (6221), 536–539. 10.1126/science.1256297 PubMed DOI
Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature 542 (7642), 433–438. 10.1038/nature21062 PubMed DOI PMC
Dorschner M. O., Amendola L. M., Turner E. H., Robertson P. D., Shirts B. H., Gallego C. J., et al. (2013). Actionable, pathogenic incidental findings in 1,000 participants’ exomes. Am. J. Hum. Genet. 93 (4), 631–640. 10.1016/j.ajhg.2013.08.006 PubMed DOI PMC
Dudding-Byth T., Baxter A., Holliday E. G., Hackett A., O’Donnell S., White S. M., et al. (2017). Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability. BMC Biotechnol. 17 (1), 90. 10.1186/s12896-017-0410-1 PubMed DOI PMC
Dyke S. O. M., Knoppers B. M., Hamosh A., Firth H. V., Hurles M., Brudno M., et al. (2017). Matching’ consent to purpose: the example of the matchmaker exchange. Hum. Mutat. 38 (10), 1281–1285. 10.1002/humu.23278 PubMed DOI PMC
Ferry Q., Steinberg J., Webber C., FitzPatrick D. R., Ponting C. P., Zisserman A., et al. (2014). Diagnostically relevant facial gestalt information from ordinary photos. ELife 3, e02020. 10.7554/eLife.02020 PubMed DOI PMC
Firth H. V., Wright C. F., and DDD Study (2011). The Deciphering Developmental Disorders (DDD) Study. Dev. Med. Child Neurol. 53 (8), 702–703. 10.1111/j.1469-8749.2011.04032.x PubMed DOI
Galton F. (1879). Composite portraits, made by combining those of many different persons into a single resultant figure. J. Anthropol. Inst. G. B. Irel 8, 132. 10.2307/2841021 DOI
Gardner O. K., Haynes K., Schweitzer D., Johns A., Magee W. P., Urata M. M., et al. (2017). Familial recurrence of 3MC syndrome in consanguineous families: a clinical and molecular diagnostic approach with review of the literature. Cleft Palate Craniofac. J. 54 (6), 739–748. 10.1597/15-151 PubMed DOI
“Global Alliance for Genomics and Health” (n.d.) Accessed September 6, 2018 https://www.ga4gh.org/.
Gripp K. W., Baker L., Telegrafi A., Monaghan K. G. (2016). The role of objective facial analysis using FDNA in making diagnoses following whole exome analysis. Report of two patients with mutations in the BAF complex genes. Am. J. Med. Genet. A 170 (7), 1754–1762. 10.1002/ajmg.a.37672 PubMed DOI
Gurovich Y., Hanani Y., Bar O., Fleischer N., Gelbman D., Basel-Salmon L., et al. (2018). DeepGestalt—identifying rare genetic syndromes using deep learning. Nat. Med. 10.1038/s41591-018-0279-0 PubMed DOI
Gymrek M., McGuire A. L., Golan D., Halperin E., Erlich Y. (2013). Identifying personal genomes by surname inference. Science (New York, N.Y). 339 (6117), 321–24. 10.1126/science.1229566 PubMed DOI
Hadj-Rabia S., Schneider H., Navarro E., Klein O., Kirby N., Huttner K., et al. (2017). Automatic recognition of the XLHED phenotype from facial images. Am. J. Med. Genet. A 173 (9), 2408–2414. 10.1002/ajmg.a.38343 PubMed DOI
Hammond P., Hutton T. J., Allanson J. E., Buxton B., Campbell L. E., Clayton-Smith J., et al. (2005). Discriminating power of localized three-dimensional facial morphology. Am. J. Hum. Genet. 77 (6), 999–1010. 10.1086/498396 PubMed DOI PMC
Hammond P., Hutton T. J., Allanson J. E., Campbell L. E., Hennekam R. C. M., Holden S., et al. (2004). 3D analysis of facial morphology. Am. J. Med. Genet. A 126A (4), 339–348. 10.1002/ajmg.a.20665 PubMed DOI
Hammond P., Suttie M., Hennekam R. C., Allanson J., Shore E. M., Kaplan F. S. (2012). The face signature of fibrodysplasia ossificans progressiva. Am. J. Med. Genet. A 158A (6), 1368–1380. 10.1002/ajmg.a.35346 PubMed DOI PMC
Hamosh A., Sobreira N., Hoover-Fong J., Sutton V. R., Boehm C., Schiettecatte F., et al. (2013). PhenoDB: a new web-based tool for the collection, storage, and analysis of phenotypic features. Hum. Mutat. 34 (4), 566–571. 10.1002/humu.22283 PubMed DOI PMC
Hennessy R. J., Baldwin P. A., Browne D. J., Kinsella A., Waddington J. L. (2010). Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia. Schizophr. Res. 122 (1–3), 63–71. 10.1016/j.schres.2010.05.001 PubMed DOI PMC
Herpers R., Rodax H., Sommer G. (1993). A neural network identifies faces with morphological syndromes. Stud. Health Technol. Inform., 481–485.
“Human Disease Genes” (n.d.) Human disease genes. Accessed September 5, 2018 http://humandiseasegenes.nl/.
“ICMJE | Recommendations | Defining the Role of Authors and Contributors” (n.d.) Accessed July 24, 2018 http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html.
“IRDiRC” (n.d.) IRDiRC. Accessed September 6, 2018 http://www.irdirc.org/.
Javed A., Agrawal S., Ng P. C. (2014). Phen-Gen: combining phenotype and genotype to analyze rare disorders. Nat. Methods 11 (9), 935–937. 10.1038/nmeth.3046 PubMed DOI
Kaye J., Whitley E. A., Lund D., Morrison M., Teare H., Melham K. (2015). Dynamic consent: a patient interface for twenty-first century research networks. Eur. J. Hum. Genet. 23 (2), 141–146. 10.1038/ejhg.2014.71 PubMed DOI PMC
Knaus A., Pantel J. T., Pendziwiat M., Hajjir N., Zhao M., Hsieh T.-C., et al. (2018). Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med. 10 (1), 3. 10.1186/s13073-017-0510-5 PubMed DOI PMC
Köhler S., Vasilevsky N. A., Engelstad M., Foster E., McMurry J., Aymé S., et al. (2017). The human phenotype ontology in 2017. Nucleic Acids Res. 45 (D1), D865–D876. 10.1093/nar/gkw1039 PubMed DOI PMC
Krawitz P., Buske O., Zhu N., Brudno M., Robinson P. N. (2015). The genomic birthday paradox: how much is enough? Hum. Mutat. 36 (10), 989–997. 10.1002/humu.22848 PubMed DOI
Kruszka P., Addissie Y. A., McGinn D. E., Porras A. R., Biggs E., Share M., et al. (2017. a). 22q11.2 deletion syndrome in diverse populations. Am. J. Med. Genet. A 173 (4), 879–888. 10.1002/ajmg.a.38199 PubMed DOI PMC
Kruszka P., Porras A. R., Addissie Y. A., Moresco A., Medrano S., Mok G. T. K., et al. (2017. b). Noonan syndrome in diverse populations. Am. J. Med. Genet. A 173 (9), 2323–2334. 10.1002/ajmg.a.38362 PubMed DOI PMC
Kruszka P., Porras A. R., Sobering A. K., Ikolo F. A., Qua S. L., Shotelersuk V., et al. (2017. c). Down syndrome in diverse populations. Am. J. Med. Genet. A 173 (1), 42–53. 10.1002/ajmg.a.38043 PubMed DOI
Kruszka P., Porras A. R., de Souza D. H., Moresco A., Huckstadt V., Gill A. D., et al. (2018). Williams–Beuren syndrome in diverse populations. Am. J. Med. Genet. A 176 (5), 1128–1136. 10.1002/ajmg.a.38672 PubMed DOI PMC
Kung S., Walters M., Claes P., LeSouef P., Goldblatt J., Martin A., et al. , (2015). “Monitoring of therapy for mucopolysaccharidosis type I using dysmorphometric facial phenotypic signatures.” In JIMD Reports, vol. 22 Eds. Zschocke J., Baumgartner M., Morava E., Patterson M., Rahman S., Peters V. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 99–106. 10.1007/8904_2015_417 PubMed DOI PMC
Landrum M. J., Lee J. M., Benson M., Brown G., Chao C., Chitipiralla S., et al. (2016). ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44 (D1), D862–D868. 10.1093/nar/gkv1222 PubMed DOI PMC
Liehr T., Acquarola N., Pyle K., St-Pierre S., Rinholm M., Bar O., et al. (2018). Next generation phenotyping in Emanuel and Pallister–Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos. Clin. Genet. 93 (2), 378–381. 10.1111/cge.13087 PubMed DOI
Loos H. S., Wieczorek D., Würtz R. P., von der Malsburg C., Horsthemke B. (2003). Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 11 (8), 555–560. 10.1038/sj.ejhg.5200997 PubMed DOI
Lumaka A., Cosemans N., Lulebo Mampasi A., Mubungu G., Mvuama N., Lubala T., et al. (2017). Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clin. Genet. 92 (2), 166–171. 10.1111/cge.12948 PubMed DOI
MacArthur D. G., Tyler-Smith C. (2010). Loss-of-function variants in the genomes of healthy humans. Hum. Mol. Genet. 19 (R2), R125–R130. 10.1093/hmg/ddq365 PubMed DOI PMC
Manousaki D., Allanson J., Wolf L., Deal C. (2015). Characterization of facial phenotypes of children with congenital hypopituitarism and their parents: a matched case–control study. Am. J. Med. Genet. A 167 (7), 1525–1533. 10.1002/ajmg.a.37069 PubMed DOI
Mells G. F., Floyd J. A. B., Morley K. I., Cordell H. J., Franklin C. S., Shin S.-Y., et al. (2011). Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43 (4), 329–332. 10.1038/ng.789 PubMed DOI PMC
“Minerva and Me—Help Rare Disease Research” (n.d.) Accessed July 31, 2018 https://www.minervaandme.com/.
“MyGene2—Home” (n.d.) Accessed August 17, 2018 https://mygene2.org/MyGene2/.
“National Institutes of Health (NIH)—All of us” (n.d.) Accessed July 24, 2018 https://allofus.nih.gov/.
Nielsen M. A. (2012). Reinventing discovery: The new era of networked science. Princeton, N.J: Princeton University Press. 10.2307/j.ctt7s4vx DOI
Pantel J. T., Zhao M., Mensah M. A., Hajjir N., Hsieh T.-C., Hanani Y., et al. (2018). Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism. J. Inherit. Metab. Dis. 41 (3), 533–539. 10.1007/s10545-018-0174-3 PubMed DOI PMC
“Patient Archive” (n.d.) Accessed August 17, 2018 http://patientarchive.org/#/home.
Pena L. D. M., Jiang Y.-H., Schoch K., Spillmann R. C., Walley N., Stong N., et al. (2018). Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet. Med. 20 (4), 464–469. 10.1038/gim.2017.128 PubMed DOI PMC
Pengelly R. J., Alom T., Zhang Z., Hunt D., Ennis S., Collins A. (2017). Evaluating phenotype-driven approaches for genetic diagnoses from exomes in a clinical setting. Sci. Rep. 7 (1), 13509. 10.1038/s41598-017-13841-y PubMed DOI PMC
Philippakis A. A., Azzariti D. R., Beltran S., Brookes A. J., Brownstein C. A., Brudno M., et al. (2015). The matchmaker exchange: a platform for rare disease gene discovery. Hum. Mutat. 36 (10), 915–921. 10.1002/humu.22858 PubMed DOI PMC
“Platform for Engaging Everyone Responsibly | GeneticAlliance.Org” (n.d.) Accessed July 24, 2018 http://www.geneticalliance.org/programs/biotrust/peer/.
“Precision Public Health: What Is It? | | Blogs | CDC” (n.d.) Accessed August 20, 2018 https://blogs.cdc.gov/genomics/2018/05/15/precision-public-health-2/.
Rehm H. L., Berg J. S., Brooks L. D., Bustamante C. D., Evans J. P., Landrum M. J., et al. (2015). ClinGen—the clinical genome resource. N. Engl. J. Med. 372 (23), 2235–2242. 10.1056/NEJMsr1406261 PubMed DOI PMC
Reijnders M. R. F., Janowski R., Alvi M., Self J. E., van Essen T. J., Vreeburg M., et al. (2018. a). PURA syndrome: clinical delineation and genotype–phenotype study in 32 individuals with review of published literature. J. Med. Genet. 55 (2), 104–113. 10.1136/jmedgenet-2017-104946 PubMed DOI PMC
Reijnders M. R. F., Miller K. A., Alvi M., Goos J. A. C., Lees M. M., de Burca A., et al. (2018. b). De novo and inherited loss-of-function variants in TLK2: clinical and genotype–phenotype evaluation of a distinct neurodevelopmental disorder. Am. J. Hum. Genet. 102 (6), 1195–1203. 10.1016/j.ajhg.2018.04.014 PubMed DOI PMC
Robinson P. N., Köhler S., Oellrich A., Sanger Mouse Genetics Project. Wang K., Mungall C. J., et al. (2014). Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 24 (2), 340–348. 10.1101/gr.160325.113 PubMed DOI PMC
Robinson P. N., Mungall C. J., Haendel M. (2015). Capturing phenotypes for precision medicine. Cold Spring Harb. Mol. Case Stud. 1 (1), a000372. 10.1101/mcs.a000372 PubMed DOI PMC
Sheldon W. H., Tucker W. B., Stevens S. S. (1945). The varieties of human physique; an introduction to constitutional psychology. New York London: Harper & brothers; https://catalog.hathitrust.org/Record/002001289
Shukla P., Gupta T., Saini A., Singh P., Balasubramanian R. (2017). A deep learning frame-work for recognizing developmental disorders, in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (Santa Rosa, CA, USA: IEEE; ), 705–714. 10.1109/WACV.2017.84 DOI
Sifrim A., Popovic D., Tranchevent L.-C., Ardeshirdavani A., Sakai R., Konings P., Vermeesch J. R., et al. (2013). EXtasy: variant prioritization by genomic data fusion. Nat. Methods 10 (11), 1083–1084. 10.1038/nmeth.2656 PubMed DOI
Singleton M. V., Guthery S. L., Voelkerding K. V., Chen K., Kennedy B., Margraf R. L., et al. (2014). Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families. Am. J. Hum. Genet. 94 (4), 599–610. 10.1016/j.ajhg.2014.03.010 PubMed DOI PMC
Smith D. W. (1966). Dysmorphology (teratology). J. Pediatr. 69 (6), 1150–1169. 10.1016/S0022-3476(66)80311-6 PubMed DOI
Sobreira N., Schiettecatte F., Valle D., Hamosh A. (2015). GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36 (10), 928–930. 10.1002/humu.22844 PubMed DOI PMC
Taruscio D., Groft S. C., Cederroth H., Melegh B., Lasko P., Kosaki K., et al. (2015). Undiagnosed Diseases Network International (UDNI): white paper for global actions to meet patient needs. Mol. Genet. Metab. 116 (4), 223–225. 10.1016/j.ymgme.2015.11.003 PubMed DOI
“UDNI” (n.d.) Accessed August 16, 2018 http://www.udninternational.org/.
Valentine M., Bihm D. C. J., Wolf L., Eugene Hoyme H., May P. A., Buckley D., et al. (2017). Computer-aided recognition of facial attributes for fetal alcohol spectrum disorders. Pediatrics 140 (6), 1–8. 10.1542/peds.2016-2028 PubMed DOI PMC
Vollmar T., Maus B., Wurtz R. P., Gillessen-Kaesbach G., Horsthemke B., Wieczorek D., et al. (2008). Impact of geometry and viewing angle on classification accuracy of 2D based analysis of dysmorphic faces. Eur. J. Med. Genet. 51 (1), 44–53. 10.1016/j.ejmg.2007.10.002 PubMed DOI
Weeramanthri T. S., Dawkins H. J. S., Baynam G., Bellgard M., Gudes O., Semmens J. B. (2018). Editorial: precision public health. Front. Public Health 6, 1–3. 10.3389/fpubh.2018.00121 PubMed DOI PMC
Woelfle M., Olliaro P., Todd M. H. (2011). Open science is a research accelerator. Nat. Chem. 3 (10), 745–748. 10.1038/nchem.1149 PubMed DOI
Wright C. F., FitzPatrick D. R., Firth H. V. (2018). Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet 19, 325. 10.1038/nrg.2018.12 PubMed DOI
Xiangyu Zhu Z. L., Yan J., Yi D., Li S. Z. (2015). High-fidelity pose and expression normalization for face recognition in the wild. IEEE, Piscataway, New Jersey, US, 787–796. 10.1109/CVPR.2015.7298679 DOI
Zarate Y. A., Smith-Hicks C. L., Greene C., Abbott M.-A., Siu V. M., Calhoun A. R. U. L., et al. (2018). Natural history and genotype–phenotype correlations in 72 individuals with SATB2-associated syndrome. Am. J. Med. Genet. A 176 (4), 925–935. 10.1002/ajmg.a.38630 PubMed DOI