Identification of Upper and Lower Level Yield Strength in Materials

. 2017 Aug 23 ; 10 (9) : . [epub] 20170823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28832526

This work evaluates the possibility of identifying mechanical parameters, especially upper and lower yield points, by the analytical processing of specific elements of the topography of surfaces generated with abrasive waterjet technology. We developed a new system of equations, which are connected with each other in such a way that the result of a calculation is a comprehensive mathematical-physical model, which describes numerically as well as graphically the deformation process of material cutting using an abrasive waterjet. The results of our model have been successfully checked against those obtained by means of a tensile test. The main prospect for future applications of the method presented in this article concerns the identification of mechanical parameters associated with the prediction of material behavior. The findings of this study can contribute to a more detailed understanding of the relationships: material properties-tool properties-deformation properties.

Zobrazit více v PubMed

Kolahan F., Khajavi A.H. Modeling and optimization of abrasive waterjet parameters using regression analysis. Int. J. Aerosp. Mech. Eng. 2011;5:248–253.

Hashish M. Optimization factors in abrasive-waterjet machining. J. Manuf. Sci. Eng. 1991;113:29–37. doi: 10.1115/1.2899619. DOI

Hashish M. A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI

Hashish M. A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI

Arola D., Ramulu M. Material removal in abrasive waterjet machining of metals. A residual stress analysis. Wear. 1997;211:302–310. doi: 10.1016/S0043-1648(97)00131-2. DOI

Oh T.M., Cho G.C. Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech. Rock Eng. 2016;49:1059–1072. doi: 10.1007/s00603-015-0778-y. DOI

Valíček J., Harničárová M., Kušnerová M., Grznárik R., Zavadil J. Proposition of a solution for the setting of the abrasive waterjet cutting technology. Meas. Sci. Rev. 2013;13:279–285. doi: 10.2478/msr-2013-0041. DOI

Valíček J., Harničárová M., Öchsner A., Hutyrová Z., Kušnerová M., Tozan H., Michenka V., Šepelák V., Mital’ D., Zajac J. Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials. 2015;8:7401–7422. doi: 10.3390/ma8115385. PubMed DOI PMC

Valíček J., Hloch S., Kozak D. Surface geometric parameters proposal for the advanced control of abrasive waterjet technology. Int. J. Adv. Manuf. Technol. 2009;41:323–328. doi: 10.1007/s00170-008-1489-2. DOI

Harničárová M., Valíček J., Öchsner A., Grznárik R., Kušnerová M., Neugebauer J., Kozak D. Predicting residual and flow stresses from surface topography created by laser cutting technology. Opt. Laser Technol. 2013;52:21–29. doi: 10.1016/j.optlastec.2013.03.024. DOI

Institute of Geonics AS CR, V.V.I. Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;

Valíček J., Harničárová M., Müllerová J., Kušnerová M. Analogy between flexible abrasive waterjet technology and traditional chip-machining technology. Materwiss. Werksttech. 2015;46:401–413. doi: 10.1002/mawe.201500415. DOI

Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI

Avril S., Bonnet M., Bretelle A.S., Grédiac M., Hild F., Ienny P., Latourte F., Lemosse D., Pagano S., Pagnacco E., et al. Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 2008;48:381–402. doi: 10.1007/s11340-008-9148-y. DOI

Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2016. ISO 6892-1:2016.

Krafft J.M. An interpretation of lower yield point plastic flow in the dynamic testing of mild steel. Acta Metall. Mater. 1962;10:85–93. doi: 10.1016/0001-6160(62)90054-8. DOI

Sun H.B., Kaneda Y., Ohmori M., Yoshida F. Effect of stress concentration on upper yield point in mild steel. Mater. Trans. 2006;47:96–100. doi: 10.2320/matertrans.47.96. DOI

Ashby M.F., David R.H.J. Engineering Materials 1: An Introduction to Their Properties and Applications. 2nd ed. Butterworth-Heinemann; Boston, MA, USA: 1996.

Krmela J., Rusnaková S., Kuśmierczak S., Pešlová F. Experimental Study of Adhesive Bond between Steel-cord and Non-linear Matrix upon Failure; Proceedings of the 25th Danubia-Adria Symposium on Experimental Methods in Solid Mechanics; Prague, Czech Republic. 24–27 September 2008; pp. 131–132.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6

. 2019 Aug 10 ; 12 (16) : . [epub] 20190810

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...