Identification of Upper and Lower Level Yield Strength in Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28832526
PubMed Central
PMC5615637
DOI
10.3390/ma10090982
PII: ma10090982
Knihovny.cz E-zdroje
- Klíčová slova
- deformation, materials parameters, surface, water jet technology, yield point,
- Publikační typ
- časopisecké články MeSH
This work evaluates the possibility of identifying mechanical parameters, especially upper and lower yield points, by the analytical processing of specific elements of the topography of surfaces generated with abrasive waterjet technology. We developed a new system of equations, which are connected with each other in such a way that the result of a calculation is a comprehensive mathematical-physical model, which describes numerically as well as graphically the deformation process of material cutting using an abrasive waterjet. The results of our model have been successfully checked against those obtained by means of a tensile test. The main prospect for future applications of the method presented in this article concerns the identification of mechanical parameters associated with the prediction of material behavior. The findings of this study can contribute to a more detailed understanding of the relationships: material properties-tool properties-deformation properties.
Zobrazit více v PubMed
Kolahan F., Khajavi A.H. Modeling and optimization of abrasive waterjet parameters using regression analysis. Int. J. Aerosp. Mech. Eng. 2011;5:248–253.
Hashish M. Optimization factors in abrasive-waterjet machining. J. Manuf. Sci. Eng. 1991;113:29–37. doi: 10.1115/1.2899619. DOI
Hashish M. A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI
Hashish M. A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI
Arola D., Ramulu M. Material removal in abrasive waterjet machining of metals. A residual stress analysis. Wear. 1997;211:302–310. doi: 10.1016/S0043-1648(97)00131-2. DOI
Oh T.M., Cho G.C. Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech. Rock Eng. 2016;49:1059–1072. doi: 10.1007/s00603-015-0778-y. DOI
Valíček J., Harničárová M., Kušnerová M., Grznárik R., Zavadil J. Proposition of a solution for the setting of the abrasive waterjet cutting technology. Meas. Sci. Rev. 2013;13:279–285. doi: 10.2478/msr-2013-0041. DOI
Valíček J., Harničárová M., Öchsner A., Hutyrová Z., Kušnerová M., Tozan H., Michenka V., Šepelák V., Mital’ D., Zajac J. Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials. 2015;8:7401–7422. doi: 10.3390/ma8115385. PubMed DOI PMC
Valíček J., Hloch S., Kozak D. Surface geometric parameters proposal for the advanced control of abrasive waterjet technology. Int. J. Adv. Manuf. Technol. 2009;41:323–328. doi: 10.1007/s00170-008-1489-2. DOI
Harničárová M., Valíček J., Öchsner A., Grznárik R., Kušnerová M., Neugebauer J., Kozak D. Predicting residual and flow stresses from surface topography created by laser cutting technology. Opt. Laser Technol. 2013;52:21–29. doi: 10.1016/j.optlastec.2013.03.024. DOI
Institute of Geonics AS CR, V.V.I. Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;
Valíček J., Harničárová M., Müllerová J., Kušnerová M. Analogy between flexible abrasive waterjet technology and traditional chip-machining technology. Materwiss. Werksttech. 2015;46:401–413. doi: 10.1002/mawe.201500415. DOI
Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI
Avril S., Bonnet M., Bretelle A.S., Grédiac M., Hild F., Ienny P., Latourte F., Lemosse D., Pagano S., Pagnacco E., et al. Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 2008;48:381–402. doi: 10.1007/s11340-008-9148-y. DOI
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2016. ISO 6892-1:2016.
Krafft J.M. An interpretation of lower yield point plastic flow in the dynamic testing of mild steel. Acta Metall. Mater. 1962;10:85–93. doi: 10.1016/0001-6160(62)90054-8. DOI
Sun H.B., Kaneda Y., Ohmori M., Yoshida F. Effect of stress concentration on upper yield point in mild steel. Mater. Trans. 2006;47:96–100. doi: 10.2320/matertrans.47.96. DOI
Ashby M.F., David R.H.J. Engineering Materials 1: An Introduction to Their Properties and Applications. 2nd ed. Butterworth-Heinemann; Boston, MA, USA: 1996.
Krmela J., Rusnaková S., Kuśmierczak S., Pešlová F. Experimental Study of Adhesive Bond between Steel-cord and Non-linear Matrix upon Failure; Proceedings of the 25th Danubia-Adria Symposium on Experimental Methods in Solid Mechanics; Prague, Czech Republic. 24–27 September 2008; pp. 131–132.
Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6