Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31405119
PubMed Central
PMC6720876
DOI
10.3390/ma12162551
PII: ma12162551
Knihovny.cz E-zdroje
- Klíčová slova
- Stellite 6, longitudinal turning, prediction of topographic parameters, surface roughness,
- Publikační typ
- časopisecké články MeSH
The aim of the paper was to examine the influence of cutting conditions on the roughness of surfaces machined by longitudinal turning, namely of surfaces coated with Stellite 6 prepared by high-velocity oxygen fuel (HVOF) technology and applied onto a standard structural steel substrate. From the results of measurements of the cutting parameters, a prediction model of the roughness parameters was created using mathematical and statistical methods. Based on a more detailed analysis and data comparison, a new method for prediction of parameters of longitudinal turning technology was obtained. The main aim of the paper was to identify the mutual discrete relationships between the substrate roughness and the machining parameters. These were the feed rate vc (m·min-1), in the case of turning and milling, and the feed rate f (mm·rev-1) and the depth of cut ap (mm). The paper compared and verified two approaches of this method, namely the mathematical statistical approach, the analytical approach and measured dates. From the evaluated and interpreted results, new equations were formulated, enabling prediction of the material parameters of the workpiece, the technological parameters and the parameters of surface quality.
Zobrazit více v PubMed
Todd R.H., Allen D.K., Alting L. Manufacturing Processes Reference Guide. Industrial Press Inc.; New York, NY, USA: 1994.
Kracke A., Allvac A. Superalloys, the Most Successful Alloy System of Modern Times-Past, Present, and Future. In: Ott E.A., Groh J.R., Banik A., Dempster T.P., Gabb R., Helmink X., Liu A., Mitchell G.P., Wusatowska-Sarnek S.A., editors. Superalloy 718 and Derivatives. John Wiley & Sons; Hoboken, NJ, USA: 2010. pp. 13–50.
Rivin E.I., Agapiou J., Brecher C., Clewett M., Erickson R., Huston F., Kadowaki Y., Lenz E., Moriwaki T., Pitsker A., et al. Tooling structure: Interface between cutting edge and machine tool. CIRP Ann. 2000;49:591–634. doi: 10.1016/S0007-8506(07)63457-X. DOI
Davim P.J. Machinability of Advanced Materials. 1st ed. Wiley-ISTE; Hoboken, NJ, USA: 2013.
Valíček J., Držík M., Hryniewicz T., Harničárová M., Rokosz K., Kušnerová M., Barčová K., Bražina D. Non-contact method for surface roughness measurement after machining. Meas. Sci. Rev. 2012;12:184–188. doi: 10.2478/v10048-012-0028-3. DOI
Hloch S., Valíček J. Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2001;5:152–168. doi: 10.1504/IJSURFSE.2011.041399. DOI
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials Kawj. CZ 305514 B6. Czech Republic Patent. 2010 Jul 23
Harničárová M., Valíček J., Kušnerová M., Grznárik R., Petrů J., Čepová L. A new method for the prediction of laser cut surface topography. Meas. Sci. Rev. 2012;12:195–204. doi: 10.2478/v10048-012-0030-9. DOI
Ancio F., Gámez A.J., Marcos M. Factors influencing the generation of a machined surface. Application to turned pieces. J. Mater. Process Technol. 2015;215:50–61. doi: 10.1016/j.jmatprotec.2014.07.027. DOI
Lu C., Ma N., Chen Z., Costes J.P. Pre-evaluation on surface profile in turning process based on cutting parameters. Int. J. Adv. Manuf. Technol. 2010;49:447–458. doi: 10.1007/s00170-009-2417-9. DOI
Kohli A., Dixit U.S. A neural-network-based methodology for the prediction of surface roughness in a turning process. Int. J. Adv. Manuf. Technol. 2004;25:118–129. doi: 10.1007/s00170-003-1810-z. DOI
Grzesik W. A revised model for predicting surface roughness in turning. Wear. 1996;194:143–148. doi: 10.1016/0043-1648(95)06825-2. DOI
Lin S.C., Chang M.F. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int. J. Mach. Tools Manuf. 1998;38:763–782. doi: 10.1016/S0890-6955(97)00073-4. DOI
Chen C.C., Liu W.C., Duffie N.A. A surface topography model for automated surface finishing. Int. J. Mach. Tools Manuf. 1998;38:543–550. doi: 10.1016/S0890-6955(97)00100-4. DOI
Benardos P.G., Vosniakos G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003;43:833–844. doi: 10.1016/S0890-6955(03)00059-2. DOI
Sidhu T.S., Prakash S., Agrawal R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys. Surf. Coat. Technol. 2006;201:273–281. doi: 10.1016/j.surfcoat.2005.11.108. DOI
Jegadeeswaran N., Ramesh M.R., Prakrathi S., Bhat K.U. Hot corrosion behaviour of HVOF sprayed stellite-6 coatings on gas turbine alloys. Trans. Indian Inst. Met. 2014;67:87–93. doi: 10.1007/s12666-013-0317-z. DOI
Shao H., Li L., Liu L.J., Zhang S.Z. Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. J. Manuf. Process. 2013;15:673–681. doi: 10.1016/j.jmapro.2013.10.001. DOI
Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z. Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys-A Review. Procedia Manuf. 2017;11:563–570. doi: 10.1016/j.promfg.2017.07.150. DOI
Hasan M.S., Mazid M.A., Clegg R.E. The Basics of Stellites in Machining Perspective. Int. J. Eng. Mater. Manuf. 2016;1:35–50. doi: 10.26776/ijemm.01.02.2016.01. DOI
Hasan M.S., Md Mazid A., Clegg R.E. Effect of cutting tool nose radius on surface roughness for Stellite 6 machining using coated carbide insert; Proceedings of the 6th Australasian Congress on Applied Mechanics; Perth, Australia. 12–15 December 2010.
Saidi R., Fathallah B.B., Mabrouki T., Belhadi S., Yallese M.A. Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. Int. J. Adv. Manuf. Technol. 2018;100:2945–2968. doi: 10.1007/s00170-018-2816-x. DOI
Ozturk S. Application of ANOVA and Taguchi methods for evaluation of the surface roughness of stellite-6 coating material. Mater. Test. 2014;56:1015–1020. doi: 10.3139/120.110665. DOI
Ozturk S. Machinability of stellite-6 coatings with ceramic inserts and tungsten carbide tools. Arab J. Sci. Eng. 2014;39:7375–7383. doi: 10.1007/s13369-014-1343-9. DOI
Yingfei G., de Escalona P.M., Galloway A. Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment. J. Mater. Eng. Perform. 2017;26:312–326. doi: 10.1007/s11665-016-2438-0. DOI
López de Lacalle L.N., Gutiérrez A., Lamikiz A., Fernandes M.H., Sánchez J.A. Turning of thick thermal spray coatings. J. Therm. Spray Technol. 2001;10:249–254.
Monkova K., Monka P., Cesanek J., Matejka J., Duchek V. Surface roughness evaluation after machining wear resistant hard coats; Proceedings of the MATEC Web of Conferences (Modern Technologies in Manufacturing); Cluj-Napoca, Romania. 12–13 October 2017.
Benghersallah M., Boulanouar L., Le Coz G., Devillez A., Dudzinski D. Machinability of Stellite 6 hardfacing; Proceedings of the ICEM 14—14th International Conference on Experimental Mechanics; Poitiers, France. 4–9 July 2010.
Klimenko S.A., Mel’niichuk Y.A., Vstovskii G.V. Interrelation between the structure parameters, mechanical properties of sprayed materials and the tool life in cutting them. J. Superhard Mater. 2008;30:115–121. doi: 10.3103/S1063457608020068. DOI
Carou D., Řehoř J., Vilček I., Houdková-Šimůnková Š. Strojírenská Technologie. Plzeň. Pilsner; University of West Bohemia, Pilsen, Czech Republic: 2015. An approach to the machining of hard coatings prepared by laser cladding and thermal spraying.
Rubio E.M., Villeta M., Saá A.J., Carou D. Analysis of main optimization techniques in predicting surface roughness in metal cutting processes. Appl. Mech. Mater. 2012;217:2171–2182. doi: 10.4028/www.scientific.net/AMM.217-219.2171. DOI
Suresh R., Basavarajappa S., Gaitonde V.N., Samuel G.L. Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int. J. Refract. Met. Hard Mater. 2012;33:75–86. doi: 10.1016/j.ijrmhm.2012.02.019. DOI
Belmonte F., Oliveira F.J., Sacramento J., Fernandes A.J.S., Silva R.F. Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diam. Relat. Mater. 2004;13:843–847. doi: 10.1016/j.diamond.2003.11.018. DOI
Almeida F.A., Oliveira F.J., Sousa M., Fernandes A.J.S., Sacramento J., Silva R.F. Machining hardmetal with CVD diamond direct coated ceramic tools: Effect of tool edge geometry. Diam. Relat. Mater. 2005;14:651–656. doi: 10.1016/j.diamond.2004.09.002. DOI
Hasan M.S., Mazid A.M., Clegg R.E. Optimisation of the Machining of Stellite 6 PTA Hardfacing Using Surface Roughness. Key Eng. Mater. 2010;443:227–231. doi: 10.4028/www.scientific.net/KEM.443.227. DOI
Kumar S., Yadav N.R., Rizvi Y. A review of modelling and optimization techniques in turning processes. Int. J. Mech. Eng. Technol. 2018;9:1146–1156.
Aykut Ş., Gölcü M., Semiz S., Ergür H.S. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J. Mater. Process Technol. 2007;190:199–203. doi: 10.1016/j.jmatprotec.2007.02.045. DOI
Exocor [online] [(accessed on 31 July 2019)]; Available online: http://exocor.com/downloads/product-datasheets/Stellite-6-Datasheet.pdf.
Houdková Š., Pala Z., Smazalová E., Vostřák M., Česánek Z. Microstructure and sliding wear properties of HVOF sprayed, laser remelted and laser clad Stellite 6 coatings. Surf. Coat. Technol. 2017;318:129–141. doi: 10.1016/j.surfcoat.2016.09.012. DOI
Mills B., Redford A.H. Machinability of Engineering Materials. Applied Science Publishers; London, UK: New York, NY, USA: 1983. pp. 13–21.
ASM Handbook . Irons, Steels, and High-Performance Alloys. ASM International; Geauga, OH, USA: 1990. Machinability of steels, properties and selection; pp. 591–602.
Ånmark N., Karasev A., Jönsson P. The effect of different non-metallic inclusions on the machinability of steels. Materials. 2015;8:751–783. doi: 10.3390/ma8020751. PubMed DOI PMC
Degarmo E.P., Black J.T., Kohser R.A. Materials and Processes in Manufacturing. 9th ed. Wiley; New York, NY, USA: 2003.
Schneider G. Cutting Tool Applications. ASM International Publisher; Farmington Hills, MI, USA: 2002.
Valíček J., Harničárová M., Kopal I., Palková Z., Kušnerová M., Panda A., Šepelák V. Identification of upper and lower level yield strength in materials. Materials. 2017;10:982. doi: 10.3390/ma10090982. PubMed DOI PMC
Valíček J., Czán A., Harničárová M., Šajgalík M., Kušnerová M., Czánová T., Kopal I., Gombár M., Kmec J., Šafář M. A new way of identifying, predicting and regulating residual stress after chip-forming machining. Int. J. Mech. Sci. 2019;155:343–359. doi: 10.1016/j.ijmecsci.2019.03.007. DOI
Experimental Insights into Free Orthogonal Cutting of Stellite