Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6

. 2019 Aug 10 ; 12 (16) : . [epub] 20190810

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31405119

The aim of the paper was to examine the influence of cutting conditions on the roughness of surfaces machined by longitudinal turning, namely of surfaces coated with Stellite 6 prepared by high-velocity oxygen fuel (HVOF) technology and applied onto a standard structural steel substrate. From the results of measurements of the cutting parameters, a prediction model of the roughness parameters was created using mathematical and statistical methods. Based on a more detailed analysis and data comparison, a new method for prediction of parameters of longitudinal turning technology was obtained. The main aim of the paper was to identify the mutual discrete relationships between the substrate roughness and the machining parameters. These were the feed rate vc (m·min-1), in the case of turning and milling, and the feed rate f (mm·rev-1) and the depth of cut ap (mm). The paper compared and verified two approaches of this method, namely the mathematical statistical approach, the analytical approach and measured dates. From the evaluated and interpreted results, new equations were formulated, enabling prediction of the material parameters of the workpiece, the technological parameters and the parameters of surface quality.

Zobrazit více v PubMed

Todd R.H., Allen D.K., Alting L. Manufacturing Processes Reference Guide. Industrial Press Inc.; New York, NY, USA: 1994.

Kracke A., Allvac A. Superalloys, the Most Successful Alloy System of Modern Times-Past, Present, and Future. In: Ott E.A., Groh J.R., Banik A., Dempster T.P., Gabb R., Helmink X., Liu A., Mitchell G.P., Wusatowska-Sarnek S.A., editors. Superalloy 718 and Derivatives. John Wiley & Sons; Hoboken, NJ, USA: 2010. pp. 13–50.

Rivin E.I., Agapiou J., Brecher C., Clewett M., Erickson R., Huston F., Kadowaki Y., Lenz E., Moriwaki T., Pitsker A., et al. Tooling structure: Interface between cutting edge and machine tool. CIRP Ann. 2000;49:591–634. doi: 10.1016/S0007-8506(07)63457-X. DOI

Davim P.J. Machinability of Advanced Materials. 1st ed. Wiley-ISTE; Hoboken, NJ, USA: 2013.

Valíček J., Držík M., Hryniewicz T., Harničárová M., Rokosz K., Kušnerová M., Barčová K., Bražina D. Non-contact method for surface roughness measurement after machining. Meas. Sci. Rev. 2012;12:184–188. doi: 10.2478/v10048-012-0028-3. DOI

Hloch S., Valíček J. Prediction of distribution relationship of titanium surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2001;5:152–168. doi: 10.1504/IJSURFSE.2011.041399. DOI

Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9073175. U.S. Patent. 2015 Jul 7;

Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials Kawj. CZ 305514 B6. Czech Republic Patent. 2010 Jul 23

Harničárová M., Valíček J., Kušnerová M., Grznárik R., Petrů J., Čepová L. A new method for the prediction of laser cut surface topography. Meas. Sci. Rev. 2012;12:195–204. doi: 10.2478/v10048-012-0030-9. DOI

Ancio F., Gámez A.J., Marcos M. Factors influencing the generation of a machined surface. Application to turned pieces. J. Mater. Process Technol. 2015;215:50–61. doi: 10.1016/j.jmatprotec.2014.07.027. DOI

Lu C., Ma N., Chen Z., Costes J.P. Pre-evaluation on surface profile in turning process based on cutting parameters. Int. J. Adv. Manuf. Technol. 2010;49:447–458. doi: 10.1007/s00170-009-2417-9. DOI

Kohli A., Dixit U.S. A neural-network-based methodology for the prediction of surface roughness in a turning process. Int. J. Adv. Manuf. Technol. 2004;25:118–129. doi: 10.1007/s00170-003-1810-z. DOI

Grzesik W. A revised model for predicting surface roughness in turning. Wear. 1996;194:143–148. doi: 10.1016/0043-1648(95)06825-2. DOI

Lin S.C., Chang M.F. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int. J. Mach. Tools Manuf. 1998;38:763–782. doi: 10.1016/S0890-6955(97)00073-4. DOI

Chen C.C., Liu W.C., Duffie N.A. A surface topography model for automated surface finishing. Int. J. Mach. Tools Manuf. 1998;38:543–550. doi: 10.1016/S0890-6955(97)00100-4. DOI

Benardos P.G., Vosniakos G.C. Predicting surface roughness in machining: A review. Int. J. Mach. Tools Manuf. 2003;43:833–844. doi: 10.1016/S0890-6955(03)00059-2. DOI

Sidhu T.S., Prakash S., Agrawal R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys. Surf. Coat. Technol. 2006;201:273–281. doi: 10.1016/j.surfcoat.2005.11.108. DOI

Jegadeeswaran N., Ramesh M.R., Prakrathi S., Bhat K.U. Hot corrosion behaviour of HVOF sprayed stellite-6 coatings on gas turbine alloys. Trans. Indian Inst. Met. 2014;67:87–93. doi: 10.1007/s12666-013-0317-z. DOI

Shao H., Li L., Liu L.J., Zhang S.Z. Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. J. Manuf. Process. 2013;15:673–681. doi: 10.1016/j.jmapro.2013.10.001. DOI

Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z. Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys-A Review. Procedia Manuf. 2017;11:563–570. doi: 10.1016/j.promfg.2017.07.150. DOI

Hasan M.S., Mazid M.A., Clegg R.E. The Basics of Stellites in Machining Perspective. Int. J. Eng. Mater. Manuf. 2016;1:35–50. doi: 10.26776/ijemm.01.02.2016.01. DOI

Hasan M.S., Md Mazid A., Clegg R.E. Effect of cutting tool nose radius on surface roughness for Stellite 6 machining using coated carbide insert; Proceedings of the 6th Australasian Congress on Applied Mechanics; Perth, Australia. 12–15 December 2010.

Saidi R., Fathallah B.B., Mabrouki T., Belhadi S., Yallese M.A. Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. Int. J. Adv. Manuf. Technol. 2018;100:2945–2968. doi: 10.1007/s00170-018-2816-x. DOI

Ozturk S. Application of ANOVA and Taguchi methods for evaluation of the surface roughness of stellite-6 coating material. Mater. Test. 2014;56:1015–1020. doi: 10.3139/120.110665. DOI

Ozturk S. Machinability of stellite-6 coatings with ceramic inserts and tungsten carbide tools. Arab J. Sci. Eng. 2014;39:7375–7383. doi: 10.1007/s13369-014-1343-9. DOI

Yingfei G., de Escalona P.M., Galloway A. Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment. J. Mater. Eng. Perform. 2017;26:312–326. doi: 10.1007/s11665-016-2438-0. DOI

López de Lacalle L.N., Gutiérrez A., Lamikiz A., Fernandes M.H., Sánchez J.A. Turning of thick thermal spray coatings. J. Therm. Spray Technol. 2001;10:249–254.

Monkova K., Monka P., Cesanek J., Matejka J., Duchek V. Surface roughness evaluation after machining wear resistant hard coats; Proceedings of the MATEC Web of Conferences (Modern Technologies in Manufacturing); Cluj-Napoca, Romania. 12–13 October 2017.

Benghersallah M., Boulanouar L., Le Coz G., Devillez A., Dudzinski D. Machinability of Stellite 6 hardfacing; Proceedings of the ICEM 14—14th International Conference on Experimental Mechanics; Poitiers, France. 4–9 July 2010.

Klimenko S.A., Mel’niichuk Y.A., Vstovskii G.V. Interrelation between the structure parameters, mechanical properties of sprayed materials and the tool life in cutting them. J. Superhard Mater. 2008;30:115–121. doi: 10.3103/S1063457608020068. DOI

Carou D., Řehoř J., Vilček I., Houdková-Šimůnková Š. Strojírenská Technologie. Plzeň. Pilsner; University of West Bohemia, Pilsen, Czech Republic: 2015. An approach to the machining of hard coatings prepared by laser cladding and thermal spraying.

Rubio E.M., Villeta M., Saá A.J., Carou D. Analysis of main optimization techniques in predicting surface roughness in metal cutting processes. Appl. Mech. Mater. 2012;217:2171–2182. doi: 10.4028/www.scientific.net/AMM.217-219.2171. DOI

Suresh R., Basavarajappa S., Gaitonde V.N., Samuel G.L. Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int. J. Refract. Met. Hard Mater. 2012;33:75–86. doi: 10.1016/j.ijrmhm.2012.02.019. DOI

Belmonte F., Oliveira F.J., Sacramento J., Fernandes A.J.S., Silva R.F. Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diam. Relat. Mater. 2004;13:843–847. doi: 10.1016/j.diamond.2003.11.018. DOI

Almeida F.A., Oliveira F.J., Sousa M., Fernandes A.J.S., Sacramento J., Silva R.F. Machining hardmetal with CVD diamond direct coated ceramic tools: Effect of tool edge geometry. Diam. Relat. Mater. 2005;14:651–656. doi: 10.1016/j.diamond.2004.09.002. DOI

Hasan M.S., Mazid A.M., Clegg R.E. Optimisation of the Machining of Stellite 6 PTA Hardfacing Using Surface Roughness. Key Eng. Mater. 2010;443:227–231. doi: 10.4028/www.scientific.net/KEM.443.227. DOI

Kumar S., Yadav N.R., Rizvi Y. A review of modelling and optimization techniques in turning processes. Int. J. Mech. Eng. Technol. 2018;9:1146–1156.

Aykut Ş., Gölcü M., Semiz S., Ergür H.S. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J. Mater. Process Technol. 2007;190:199–203. doi: 10.1016/j.jmatprotec.2007.02.045. DOI

Exocor [online] [(accessed on 31 July 2019)]; Available online: http://exocor.com/downloads/product-datasheets/Stellite-6-Datasheet.pdf.

Houdková Š., Pala Z., Smazalová E., Vostřák M., Česánek Z. Microstructure and sliding wear properties of HVOF sprayed, laser remelted and laser clad Stellite 6 coatings. Surf. Coat. Technol. 2017;318:129–141. doi: 10.1016/j.surfcoat.2016.09.012. DOI

Mills B., Redford A.H. Machinability of Engineering Materials. Applied Science Publishers; London, UK: New York, NY, USA: 1983. pp. 13–21.

ASM Handbook . Irons, Steels, and High-Performance Alloys. ASM International; Geauga, OH, USA: 1990. Machinability of steels, properties and selection; pp. 591–602.

Ånmark N., Karasev A., Jönsson P. The effect of different non-metallic inclusions on the machinability of steels. Materials. 2015;8:751–783. doi: 10.3390/ma8020751. PubMed DOI PMC

Degarmo E.P., Black J.T., Kohser R.A. Materials and Processes in Manufacturing. 9th ed. Wiley; New York, NY, USA: 2003.

Schneider G. Cutting Tool Applications. ASM International Publisher; Farmington Hills, MI, USA: 2002.

Valíček J., Harničárová M., Kopal I., Palková Z., Kušnerová M., Panda A., Šepelák V. Identification of upper and lower level yield strength in materials. Materials. 2017;10:982. doi: 10.3390/ma10090982. PubMed DOI PMC

Valíček J., Czán A., Harničárová M., Šajgalík M., Kušnerová M., Czánová T., Kopal I., Gombár M., Kmec J., Šafář M. A new way of identifying, predicting and regulating residual stress after chip-forming machining. Int. J. Mech. Sci. 2019;155:343–359. doi: 10.1016/j.ijmecsci.2019.03.007. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...