Experimental Insights into Free Orthogonal Cutting of Stellite

. 2025 Feb 20 ; 18 (5) : . [epub] 20250220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40077147

Grantová podpora
1/0691/23 VEGA
1/0691/23 Ministry of Education, Science, Research and Sport of the Slovak Republic

The effectiveness of a machining process can be determined by analysing the quality of the generated surface and the rate of tool wear. Stellite is highly challenging to machine, which is why it is primarily processed through grinding methods. This study concentrates on the impact of cutting parameters and tool wear (VBb, KBb) on the created surface roughness surface (Rt, Ra, Rz) during the orthogonal cutting of Stellite 6, which is overlaid on a steel surface, C45, prepared by means of HP/HVOF (JP-5000). The results indicate that the dominant influence on the change in the total roughness profile height value (Rt) is the mutual interaction of cutting speed and depth of cut at 16% (p < 0.000). The greatest impact on the change in the mean arithmetic deviation of the roughness profile (Ra) value is the interaction of cutting speed, tool front angle, and depth of cut with a 15% share (p < 0.000), as well as on the change in the Rz value (15%) and tool wear VBb (25%). This investigation lays the groundwork for potentially substituting the processing of flat surfaces with hardened layers created by thermal spraying (such as Stellite 6) with grinding or methods that offer greater efficiency from both economic and technological perspectives.

Zobrazit více v PubMed

Mishra R., Singh P. Machining of Stellite Alloys: Challenges and Solutions. Int. J. Adv. Manuf. Technol. 2021;113:2925–2935.

Shao H., Li L., Liu L.J., Zhang S.Z. Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. J. Manuf. Process. 2013;15:673–681. doi: 10.1016/j.jmapro.2013.10.001. DOI

Jasmin N.M., Reddy Y.A., Kuttan A.A., Nikhil A., Suresh J.V., Reddy S.S., Subbiah R. Experimental investigation of Machining of stellite alloy. Mater. Today Proc. 2022;66:665–669. doi: 10.1016/j.matpr.2022.03.635. DOI

Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z.J.P.M. Machinability of cobalt-based and cobalt chromium molybdenum alloys-a review. Procedia Manuf. 2017;11:563–570. doi: 10.1016/j.promfg.2017.07.150. DOI

Ou W., Xiong J., Peng Y., Xu J., Chen Z., Zhang H., Li X., Yang J., Zhang L., Ma G., et al. Transformation of carbides and mechanisms for cracking in Co-based alloy surfacing layer during thermal fatigue. Mater. Charact. 2023;201:112971. doi: 10.1016/j.matchar.2023.112971. DOI

Hasan M.S., Abdul M.M., Clegg R.E. Optimisation of the machining of stellite 6 PTA hardfacing using surface roughness. Key Eng. Mater. 2010;443:227–231. doi: 10.4028/www.scientific.net/KEM.443.227. DOI

Sassatelli P., Bolelli G., Gualtieri M.L., Heinonen E., Honkanen M., Lusvarghi L., Manfredini T., Rigon R., Vippola M. Properties of HVOF-sprayed Stellite-6 coatings. Surf. Coat. Technol. 2018;338:45–62. doi: 10.1016/j.surfcoat.2018.01.078. DOI

Hagen L., Paulus M., Tillmann W. Microstructural and tribo-mechanical properties of arc-sprayed CoCr-based coatings. J. Therm. Spray. Technol. 2022;31:2229–2242. doi: 10.1007/s11666-022-01440-x. DOI

Erfanmanesh M., Shoja-Razavi R., Barekat M., Hashemi S.H., Borhani M.R., Naderi-Samani H., Ilanlou M., Nourollahi A. High-temperature wear behavior of HVOF sprayed, laser glazed, and laser cladded stellite 6 coatings on stainless steel substrate. J. Adhes. Sci. Technol. 2022;37:2440–2460. doi: 10.1080/01694243.2022.2140885. DOI

Bartkowski D., Bartkowska A., Olszewska J., Przestacki D., Ulbrich D. Stellite-6/(WC + TiC) Composite Coatings Produced by Laser Alloying on S355 Steel. Materials. 2023;16:5000. doi: 10.3390/ma16145000. PubMed DOI PMC

Liu R., Yao J., Zhang Q., Yao M.X., Collier R. Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys. Mater. Des. 2015;78:95–106. doi: 10.1016/j.matdes.2015.04.030. DOI

Yao J., Ding Y., Liu R., Zhang Q., Wang L. Wear and corrosion performance of laser-clad low-carbon high-molybdenum Stellite alloys. Opt. Laser Technol. 2018;107:32–45. doi: 10.1016/j.optlastec.2018.05.021. DOI

Valíček J., Harničárová M., Řehoř J., Kušnerová M., Gombár M., Drbúl M., Šajgalík M., Filipenský J., Fulemová J., Vagaská A. Prediction of cutting parameters of HVOF-Sprayed Stellite 6. Appl. Sci. 2020;10:2524. doi: 10.3390/app10072524. DOI

Valíček J., Řehoř J., Harničárová M., Gombár M., Kušnerová M., Fulemová J., Vagaská A. Investigation of surface roughness and predictive modelling of machining Stellite 6. Materials. 2019;12:2551. doi: 10.3390/ma12162551. PubMed DOI PMC

Řehoř J., Gombár M., Harničárová M., Kušnerová M., Houdková-Šimůnková Š., Valíček J., Fulemová J., Vagaská A. Investigation of machining of Stellite 6 alloy deposited on steel substrate. J. Adv. Manuf. Technol. 2022;121:889–901. doi: 10.1007/s00170-022-09380-0. DOI

Yingfei G., De Escalona P.M., Galloway A. Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment. J. Mater. Eng. Perform. 2017;26:312–326. doi: 10.1007/s11665-016-2438-0. DOI

Kumar A., Sharma R. A Review on Machinability of Stellite Alloys. Mater. Today. 2019;17:234–238.

Singh M., Gupta S. Surface Finish and Tool Wear in Machining of Stellite 6. Mater. Sci. Eng. A. 2020;778:139–145.

SAE International . Cobalt Alloys, Bars, Sheet, and Plate 60Co—28Cr—4.5W—1.15C Solution Heat Treated (SAE AMS 5894D-2016) SAE International; Warrendale, PA, USA: 2016.

Karthik S.R., Londe N.V., Shetty R., Nayak R., Hedge A. Optimization and prediction of hardness, wear and surface roughness on age hardened stellite 6 alloys. Manuf. Rev. 2022;9:10.

Saidi R., Fathallah B.B., Mabrouki T., Belhadi S., Yallese M.A. Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. J. Adv. Manuf. Technol. 2019;100:2945–2968. doi: 10.1007/s00170-018-2816-x. DOI

Ben Fathallah B., Saidi R., Mabrouki T., Belhadi S., Yallese M.A. In Multi-optimization of Stellite 6 Turning Parameters for Better Surface Quality and Higher Productivity Through RSM and Grey Relational Analysis. In: Aifaoui N., Affi Z., Abbes M.S., Walha L., Haddar M., Romdhane L., Benamara A., Chouchane M., Chaari F., editors. Design and Modeling of Mechanical Systems—IV. CMSM 2019. Springer International Publishing; Cham, Switzerland: 2020. pp. 382–391. (Lecture Notes in Mechanical Engineering).

Ozturk S. Application of ANOVA and Taguchi methods for evaluation of the surface roughness of Stellite-6 coating material. Mater. Test. 2014;56:1015–1020. doi: 10.3139/120.110665. DOI

Zare Chavoshi S. Modelling of surface roughness in CNC face milling of alloy stellite 6. Int. J. Comput. Mater. Sci. Surf. Eng. 2013;5:304–321. doi: 10.1504/IJCMSSE.2013.059121. DOI

Fathallah B.B., Saidi R., Belhadi S., Yallese M.A., Mabrouki T. Modelling of cutting forces and surface roughness evolutions during straight turning of Stellite 6 material based on response surface methodology, artificial neural networks and support vector machine approaches. J. Mech. Eng. Sci. 2021;15:8540–8554. doi: 10.15282/jmes.15.4.2021.07.0673. DOI

Zhong M., Liu W. Laser surface cladding: The state of the art and challenges. Proc. Inst. Mech. Eng Part C. 2010;224:1041–1060. doi: 10.1243/09544062JMES1782. DOI

Qi Z., Li B., Xiong L. Improved analytical model for residual stress prediction in orthogonal cutting. Front. Mech. Eng. 2014;9:249–256. doi: 10.1007/s11465-014-0310-1. DOI

Liu J., Wang Y., Li H., Costil S., Bolot R. Numerical and experimental analysis of thermal and mechanical behavior of NiCrBSi coatings during the plasma spray process. J. Mater. Process Tech. 2017;249:471–478. doi: 10.1016/j.jmatprotec.2017.06.025. DOI

Choudhury I.A., Das A. Advanced Machining of Hard Materials: Techniques and Applications. J. Manuf. Process. 2022;64:112–125.

Zhang Y., Wang L. Effect of Cutting Parameters on Surface Roughness in Hard Turning. J. Mater. Process Technol. 2020;284:116759.

Zoei M.S., Sadeghi M.H., Salehi M. Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC–10Co–4Cr coating. Surf. Coat. Tech. 2016;307:886–891. doi: 10.1016/j.surfcoat.2016.09.067. DOI

Maiti A.K., Mukhopadhyay N., Raman R. Improving the wear behavior of WC-CoCr-based HVOF coating by surface grinding. J. Mater. Eng. Perform. 2009;18:1060–1066. doi: 10.1007/s11665-009-9354-5. DOI

Hasan M.S., Mazid A.M., Clegg R. The basics of Stellites in machining perspective. Int. J. Eng. Mater. Manuf. 2016;1:35–50. doi: 10.26776/ijemm.01.02.2016.01. DOI

Chen W., Liu B., Chen L., Xu J., Zhu Y. Effect of laser cladding stellite 6-cr3c2-ws2 self-lubricating composite coating on wear resistance and microstructure of H13. Metals. 2020;10:785. doi: 10.3390/met10060785. DOI

Li Z., Cui Y., Wang J., Liu C., Wang J., Xu T., Lu T., Zhang H., Lu J., Ma S., et al. Characterization of microstructure and mechanical properties of stellite 6 part fabricated by wire arc additive manufacturing. Metals. 2019;9:474. doi: 10.3390/met9040474. DOI

Shah S., Joshi A., Chauhan K., Oza A., Prakash C., Campilho R.D.S.G., Kumar S. Feasibility Analysis of Machining Cobalt-Chromium Alloy (Stellite-6) Using TiN Coated Binary Inserts. Materials. 2022;15:7294. doi: 10.3390/ma15207294. PubMed DOI PMC

Da Silva W.S., Souza R.M.D., Mello J.D.B., Goldenstein H. Room temperature mechanical properties and tribology of NICRALC and Stellite casting alloys. Wear. 2011;271:1819–1827. doi: 10.1016/j.wear.2011.02.030. DOI

Yu H., Ahmed R., Lovelock H.D.V., Davies S. Influence of manufacturing process and alloying element content on the tribomechanical properties of cobalt-based alloys. J. Tribol. 2009;131:011601. doi: 10.1115/1.2991122. DOI

Yu H., Ahmed R., Lovelock H.D.V. A comparison of the tribo-mechanical properties of a wear resistant cobalt-based alloy produced by different manufacturing processes. J. Tribol. 2007;129:586–594. doi: 10.1115/1.2736450. DOI

Motallebzadeh A., Atar E., Cimenoglu H. Raman spectroscopy characterization of hypo-eutectic CoCrWC alloy tribolayers. Ind. Lubr. Tribol. 2016;68:515–520. doi: 10.1108/ILT-11-2015-0168. DOI

Jeng M.C., Yan L.Y., Doong J.L. Wear behaviour of cobalt-based alloys in laser surface cladding. Surf. Coat. Technol. 1991;48:225–231. doi: 10.1016/0257-8972(91)90008-K. DOI

Persson D.H., Coronel E., Jacobson S., Hogmark S. Surface analysis of laser cladded Stellite exposed to self-mated high load dry sliding. Wear. 2006;261:96–100. doi: 10.1016/j.wear.2005.09.027. DOI

Sidhu T.S., Prakash S., Agrawal R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys. Surf. Coat. Technol. 2006;201:273–281. doi: 10.1016/j.surfcoat.2005.11.108. DOI

Winer B.I. Statistical Principles in Experimental Design. 2nd ed. McGraw-Hill; New York, NY, USA: 1971.

Steels for Quenching and Tempering—Part 2: Technical Delivery Conditions for Carbon Steels. European Committee for Standardization (CEN); Brussels, Belgium: 2006.

Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization; Geneva, Switzerland: 1998.

Breiman L., Friedman J., Olshen R.A., Stone C.J. Classification and Regression Trees. 1st ed. Chapman and Hall/CRC; New York, NY, USA: 1984.

Shaw M.C. Metal Cutting Principles. 2nd ed. Oxford University Press; Oxford, UK: 2005. pp. 145–167.

Merchant M.E. Mechanics of the Metal Cutting Process. J. Appl. Phys. 2018;43:136–145.

Trent E.M., Wright P.K. Metal Cutting. 4th ed. Butterworth-Heinemann; Oxford, UK: 2012. pp. 98–124.

Astakhov V.P. Geometry of Single-point Turning Tools and Drills: Fundamentals and Practical Applications. Springer; Berlin/Heidelberg, Germany: 2016. pp. 220–245.

Komanduri R., Hou Z.B. On the mechanics of the metal cutting process—Part I: Chip formation in orthogonal cutting. Int. J. Mech. Sci. 2001;43:425–451.

Zhang H., Li W., Chen X. Thermal effects in superalloy machining: A comprehensive analysis. J. Manuf. Process. 2023;95:113–125.

Liu R., Wang S. Advanced machining strategies for heat-resistant superalloys. Int. J. Adv. Manuf. Technol. 2024;130:1225–1240.

Kim S., Park J., Lee H. Comparative analysis of cutting tool materials in superalloy machining. Wear. 2023;512:204289.

Park J., Lee S. Advanced cutting tool technologies for aerospace applications. J. Manuf. Sci. Eng. 2023;145:081005.

Wang L., Zhang H., Liu R. Statistical approaches in machining research: A new paradigm. Int. J. Mach. Tools Manuf. 2024;179:103947.

Rodriguez M., Smith J., Brown K. Modern statistical methods in manufacturing research. J. Manuf. Syst. 2023;67:201–215.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...