Experimental Insights into Free Orthogonal Cutting of Stellite
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0691/23
VEGA
1/0691/23
Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
40077147
PubMed Central
PMC11901282
DOI
10.3390/ma18050921
PII: ma18050921
Knihovny.cz E-zdroje
- Klíčová slova
- HP/HVOF, Stellite 6, orthogonal cutting, surface roughness, wear,
- Publikační typ
- časopisecké články MeSH
The effectiveness of a machining process can be determined by analysing the quality of the generated surface and the rate of tool wear. Stellite is highly challenging to machine, which is why it is primarily processed through grinding methods. This study concentrates on the impact of cutting parameters and tool wear (VBb, KBb) on the created surface roughness surface (Rt, Ra, Rz) during the orthogonal cutting of Stellite 6, which is overlaid on a steel surface, C45, prepared by means of HP/HVOF (JP-5000). The results indicate that the dominant influence on the change in the total roughness profile height value (Rt) is the mutual interaction of cutting speed and depth of cut at 16% (p < 0.000). The greatest impact on the change in the mean arithmetic deviation of the roughness profile (Ra) value is the interaction of cutting speed, tool front angle, and depth of cut with a 15% share (p < 0.000), as well as on the change in the Rz value (15%) and tool wear VBb (25%). This investigation lays the groundwork for potentially substituting the processing of flat surfaces with hardened layers created by thermal spraying (such as Stellite 6) with grinding or methods that offer greater efficiency from both economic and technological perspectives.
Zobrazit více v PubMed
Mishra R., Singh P. Machining of Stellite Alloys: Challenges and Solutions. Int. J. Adv. Manuf. Technol. 2021;113:2925–2935.
Shao H., Li L., Liu L.J., Zhang S.Z. Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. J. Manuf. Process. 2013;15:673–681. doi: 10.1016/j.jmapro.2013.10.001. DOI
Jasmin N.M., Reddy Y.A., Kuttan A.A., Nikhil A., Suresh J.V., Reddy S.S., Subbiah R. Experimental investigation of Machining of stellite alloy. Mater. Today Proc. 2022;66:665–669. doi: 10.1016/j.matpr.2022.03.635. DOI
Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z.J.P.M. Machinability of cobalt-based and cobalt chromium molybdenum alloys-a review. Procedia Manuf. 2017;11:563–570. doi: 10.1016/j.promfg.2017.07.150. DOI
Ou W., Xiong J., Peng Y., Xu J., Chen Z., Zhang H., Li X., Yang J., Zhang L., Ma G., et al. Transformation of carbides and mechanisms for cracking in Co-based alloy surfacing layer during thermal fatigue. Mater. Charact. 2023;201:112971. doi: 10.1016/j.matchar.2023.112971. DOI
Hasan M.S., Abdul M.M., Clegg R.E. Optimisation of the machining of stellite 6 PTA hardfacing using surface roughness. Key Eng. Mater. 2010;443:227–231. doi: 10.4028/www.scientific.net/KEM.443.227. DOI
Sassatelli P., Bolelli G., Gualtieri M.L., Heinonen E., Honkanen M., Lusvarghi L., Manfredini T., Rigon R., Vippola M. Properties of HVOF-sprayed Stellite-6 coatings. Surf. Coat. Technol. 2018;338:45–62. doi: 10.1016/j.surfcoat.2018.01.078. DOI
Hagen L., Paulus M., Tillmann W. Microstructural and tribo-mechanical properties of arc-sprayed CoCr-based coatings. J. Therm. Spray. Technol. 2022;31:2229–2242. doi: 10.1007/s11666-022-01440-x. DOI
Erfanmanesh M., Shoja-Razavi R., Barekat M., Hashemi S.H., Borhani M.R., Naderi-Samani H., Ilanlou M., Nourollahi A. High-temperature wear behavior of HVOF sprayed, laser glazed, and laser cladded stellite 6 coatings on stainless steel substrate. J. Adhes. Sci. Technol. 2022;37:2440–2460. doi: 10.1080/01694243.2022.2140885. DOI
Bartkowski D., Bartkowska A., Olszewska J., Przestacki D., Ulbrich D. Stellite-6/(WC + TiC) Composite Coatings Produced by Laser Alloying on S355 Steel. Materials. 2023;16:5000. doi: 10.3390/ma16145000. PubMed DOI PMC
Liu R., Yao J., Zhang Q., Yao M.X., Collier R. Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys. Mater. Des. 2015;78:95–106. doi: 10.1016/j.matdes.2015.04.030. DOI
Yao J., Ding Y., Liu R., Zhang Q., Wang L. Wear and corrosion performance of laser-clad low-carbon high-molybdenum Stellite alloys. Opt. Laser Technol. 2018;107:32–45. doi: 10.1016/j.optlastec.2018.05.021. DOI
Valíček J., Harničárová M., Řehoř J., Kušnerová M., Gombár M., Drbúl M., Šajgalík M., Filipenský J., Fulemová J., Vagaská A. Prediction of cutting parameters of HVOF-Sprayed Stellite 6. Appl. Sci. 2020;10:2524. doi: 10.3390/app10072524. DOI
Valíček J., Řehoř J., Harničárová M., Gombár M., Kušnerová M., Fulemová J., Vagaská A. Investigation of surface roughness and predictive modelling of machining Stellite 6. Materials. 2019;12:2551. doi: 10.3390/ma12162551. PubMed DOI PMC
Řehoř J., Gombár M., Harničárová M., Kušnerová M., Houdková-Šimůnková Š., Valíček J., Fulemová J., Vagaská A. Investigation of machining of Stellite 6 alloy deposited on steel substrate. J. Adv. Manuf. Technol. 2022;121:889–901. doi: 10.1007/s00170-022-09380-0. DOI
Yingfei G., De Escalona P.M., Galloway A. Influence of cutting parameters and tool wear on the surface integrity of cobalt-based stellite 6 alloy when machined under a dry cutting environment. J. Mater. Eng. Perform. 2017;26:312–326. doi: 10.1007/s11665-016-2438-0. DOI
Kumar A., Sharma R. A Review on Machinability of Stellite Alloys. Mater. Today. 2019;17:234–238.
Singh M., Gupta S. Surface Finish and Tool Wear in Machining of Stellite 6. Mater. Sci. Eng. A. 2020;778:139–145.
SAE International . Cobalt Alloys, Bars, Sheet, and Plate 60Co—28Cr—4.5W—1.15C Solution Heat Treated (SAE AMS 5894D-2016) SAE International; Warrendale, PA, USA: 2016.
Karthik S.R., Londe N.V., Shetty R., Nayak R., Hedge A. Optimization and prediction of hardness, wear and surface roughness on age hardened stellite 6 alloys. Manuf. Rev. 2022;9:10.
Saidi R., Fathallah B.B., Mabrouki T., Belhadi S., Yallese M.A. Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. J. Adv. Manuf. Technol. 2019;100:2945–2968. doi: 10.1007/s00170-018-2816-x. DOI
Ben Fathallah B., Saidi R., Mabrouki T., Belhadi S., Yallese M.A. In Multi-optimization of Stellite 6 Turning Parameters for Better Surface Quality and Higher Productivity Through RSM and Grey Relational Analysis. In: Aifaoui N., Affi Z., Abbes M.S., Walha L., Haddar M., Romdhane L., Benamara A., Chouchane M., Chaari F., editors. Design and Modeling of Mechanical Systems—IV. CMSM 2019. Springer International Publishing; Cham, Switzerland: 2020. pp. 382–391. (Lecture Notes in Mechanical Engineering).
Ozturk S. Application of ANOVA and Taguchi methods for evaluation of the surface roughness of Stellite-6 coating material. Mater. Test. 2014;56:1015–1020. doi: 10.3139/120.110665. DOI
Zare Chavoshi S. Modelling of surface roughness in CNC face milling of alloy stellite 6. Int. J. Comput. Mater. Sci. Surf. Eng. 2013;5:304–321. doi: 10.1504/IJCMSSE.2013.059121. DOI
Fathallah B.B., Saidi R., Belhadi S., Yallese M.A., Mabrouki T. Modelling of cutting forces and surface roughness evolutions during straight turning of Stellite 6 material based on response surface methodology, artificial neural networks and support vector machine approaches. J. Mech. Eng. Sci. 2021;15:8540–8554. doi: 10.15282/jmes.15.4.2021.07.0673. DOI
Zhong M., Liu W. Laser surface cladding: The state of the art and challenges. Proc. Inst. Mech. Eng Part C. 2010;224:1041–1060. doi: 10.1243/09544062JMES1782. DOI
Qi Z., Li B., Xiong L. Improved analytical model for residual stress prediction in orthogonal cutting. Front. Mech. Eng. 2014;9:249–256. doi: 10.1007/s11465-014-0310-1. DOI
Liu J., Wang Y., Li H., Costil S., Bolot R. Numerical and experimental analysis of thermal and mechanical behavior of NiCrBSi coatings during the plasma spray process. J. Mater. Process Tech. 2017;249:471–478. doi: 10.1016/j.jmatprotec.2017.06.025. DOI
Choudhury I.A., Das A. Advanced Machining of Hard Materials: Techniques and Applications. J. Manuf. Process. 2022;64:112–125.
Zhang Y., Wang L. Effect of Cutting Parameters on Surface Roughness in Hard Turning. J. Mater. Process Technol. 2020;284:116759.
Zoei M.S., Sadeghi M.H., Salehi M. Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC–10Co–4Cr coating. Surf. Coat. Tech. 2016;307:886–891. doi: 10.1016/j.surfcoat.2016.09.067. DOI
Maiti A.K., Mukhopadhyay N., Raman R. Improving the wear behavior of WC-CoCr-based HVOF coating by surface grinding. J. Mater. Eng. Perform. 2009;18:1060–1066. doi: 10.1007/s11665-009-9354-5. DOI
Hasan M.S., Mazid A.M., Clegg R. The basics of Stellites in machining perspective. Int. J. Eng. Mater. Manuf. 2016;1:35–50. doi: 10.26776/ijemm.01.02.2016.01. DOI
Chen W., Liu B., Chen L., Xu J., Zhu Y. Effect of laser cladding stellite 6-cr3c2-ws2 self-lubricating composite coating on wear resistance and microstructure of H13. Metals. 2020;10:785. doi: 10.3390/met10060785. DOI
Li Z., Cui Y., Wang J., Liu C., Wang J., Xu T., Lu T., Zhang H., Lu J., Ma S., et al. Characterization of microstructure and mechanical properties of stellite 6 part fabricated by wire arc additive manufacturing. Metals. 2019;9:474. doi: 10.3390/met9040474. DOI
Shah S., Joshi A., Chauhan K., Oza A., Prakash C., Campilho R.D.S.G., Kumar S. Feasibility Analysis of Machining Cobalt-Chromium Alloy (Stellite-6) Using TiN Coated Binary Inserts. Materials. 2022;15:7294. doi: 10.3390/ma15207294. PubMed DOI PMC
Da Silva W.S., Souza R.M.D., Mello J.D.B., Goldenstein H. Room temperature mechanical properties and tribology of NICRALC and Stellite casting alloys. Wear. 2011;271:1819–1827. doi: 10.1016/j.wear.2011.02.030. DOI
Yu H., Ahmed R., Lovelock H.D.V., Davies S. Influence of manufacturing process and alloying element content on the tribomechanical properties of cobalt-based alloys. J. Tribol. 2009;131:011601. doi: 10.1115/1.2991122. DOI
Yu H., Ahmed R., Lovelock H.D.V. A comparison of the tribo-mechanical properties of a wear resistant cobalt-based alloy produced by different manufacturing processes. J. Tribol. 2007;129:586–594. doi: 10.1115/1.2736450. DOI
Motallebzadeh A., Atar E., Cimenoglu H. Raman spectroscopy characterization of hypo-eutectic CoCrWC alloy tribolayers. Ind. Lubr. Tribol. 2016;68:515–520. doi: 10.1108/ILT-11-2015-0168. DOI
Jeng M.C., Yan L.Y., Doong J.L. Wear behaviour of cobalt-based alloys in laser surface cladding. Surf. Coat. Technol. 1991;48:225–231. doi: 10.1016/0257-8972(91)90008-K. DOI
Persson D.H., Coronel E., Jacobson S., Hogmark S. Surface analysis of laser cladded Stellite exposed to self-mated high load dry sliding. Wear. 2006;261:96–100. doi: 10.1016/j.wear.2005.09.027. DOI
Sidhu T.S., Prakash S., Agrawal R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys. Surf. Coat. Technol. 2006;201:273–281. doi: 10.1016/j.surfcoat.2005.11.108. DOI
Winer B.I. Statistical Principles in Experimental Design. 2nd ed. McGraw-Hill; New York, NY, USA: 1971.
Steels for Quenching and Tempering—Part 2: Technical Delivery Conditions for Carbon Steels. European Committee for Standardization (CEN); Brussels, Belgium: 2006.
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. International Organization for Standardization; Geneva, Switzerland: 1998.
Breiman L., Friedman J., Olshen R.A., Stone C.J. Classification and Regression Trees. 1st ed. Chapman and Hall/CRC; New York, NY, USA: 1984.
Shaw M.C. Metal Cutting Principles. 2nd ed. Oxford University Press; Oxford, UK: 2005. pp. 145–167.
Merchant M.E. Mechanics of the Metal Cutting Process. J. Appl. Phys. 2018;43:136–145.
Trent E.M., Wright P.K. Metal Cutting. 4th ed. Butterworth-Heinemann; Oxford, UK: 2012. pp. 98–124.
Astakhov V.P. Geometry of Single-point Turning Tools and Drills: Fundamentals and Practical Applications. Springer; Berlin/Heidelberg, Germany: 2016. pp. 220–245.
Komanduri R., Hou Z.B. On the mechanics of the metal cutting process—Part I: Chip formation in orthogonal cutting. Int. J. Mech. Sci. 2001;43:425–451.
Zhang H., Li W., Chen X. Thermal effects in superalloy machining: A comprehensive analysis. J. Manuf. Process. 2023;95:113–125.
Liu R., Wang S. Advanced machining strategies for heat-resistant superalloys. Int. J. Adv. Manuf. Technol. 2024;130:1225–1240.
Kim S., Park J., Lee H. Comparative analysis of cutting tool materials in superalloy machining. Wear. 2023;512:204289.
Park J., Lee S. Advanced cutting tool technologies for aerospace applications. J. Manuf. Sci. Eng. 2023;145:081005.
Wang L., Zhang H., Liu R. Statistical approaches in machining research: A new paradigm. Int. J. Mach. Tools Manuf. 2024;179:103947.
Rodriguez M., Smith J., Brown K. Modern statistical methods in manufacturing research. J. Manuf. Syst. 2023;67:201–215.