Thermodynamics and Mechanics of Thermal Spraying of Steel EN 10060 Substrate with NiCrBSi Alloy after Milling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ED2.1.00/19.0391
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33255781
PubMed Central
PMC7728325
DOI
10.3390/ma13235344
PII: ma13235344
Knihovny.cz E-zdroje
- Klíčová slova
- HVOF, NiCrBSi alloy, coatings, mechanics, thermal spraying, thermodynamics,
- Publikační typ
- časopisecké články MeSH
The objective of this paper is to present a new way of identifying and predicting the relationship between thermodynamic and physical-mechanical parameters in the formation of a layer after spraying on a substrate with NiCrBSi alloy and its subsequent processing by milling. The milling of the spherical surface of the EN 10060 material after spraying was performed on the DMU 40 eVolinear linear milling centre. The experimental part of the article is focused on investigating the influence of cutting parameters when machining a selected combination of materials (substrate-coating: EN 10060 steel-NiCrBSi alloy). The experiment is based on the results of direct measurements of three basic cutting parameters, namely: cutting speed vc (m∙min-1), feed per tooth fz (mm), and the depth of cut ap (mm). The new distribution functions of selected cutting parameters were derived. The analytical results of the thermodynamic calculations performed on nickel-based alloy can be used for accurate predictions of the technological parameters of milling a spherical substrate made of EN 10060 steel after HVOF spraying, and also for both sample preparation and the subsequent production of high-quality coatings.
Zobrazit více v PubMed
Yilbas B.S., Al-Zaharnah I., Sahin A. Flexural Testing of Weld Site and HVOF Coating Characteristics. Materials Forming, Machining and Tribology. Springer; Heidelberg, Germany: 2014. HVOF Coating and Characterization; pp. 103–156.
Schneider K.E., Belashchenko V., Dratwinski M., Siegmann S., Zagorski A. Thermal Spraying for Power Generation Components. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2006.
Lang E. Coatings for High Temperature Applications. Applied Science Publishers Ltd.; Essex, UK: 1983.
Roy M., Davim J.P. Thermal Sprayed Coatings and Their Tribological Performances. Engineering Science Reference; IGI Global; Hershey, PA, USA: 2015.
Sobolev V.V., Guilemany J.M., Nutting J., Joshi S. High Velocity Oxy-Fuel Spraying: Theory, Structure-Property Relationships and Applications. Maney Publishing for IOM3; The Institute of Materials, Minerals and Mining; London, UK: 2004.
Brandt O.C. Mechanical properties of HVOF coatings. J. Therm. Spray Technol. 1995;4:147–152. doi: 10.1007/BF02646105. DOI
Tejero-Martin D., Rad M.R., McDonald A., Hussain T. Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings. J. Therm. Spray Technol. 2019;28:598–644. doi: 10.1007/s11666-019-00857-1. DOI
George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI
Tsai M.-H., Yeh J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690. DOI
Srivatsan T.S., Gupta M. High Entropy Alloys-Innovations, Advances, and Applications. CRC Press; Boca Raton, FL, USA: 2020.
Taheri K., Elhoriny M., Plachetta M., Gadow R. Thermodynamic Analysis of Resources Used in Thermal Spray Processes: Energy and Exergy Methods. Entropy. 2016;18:237. doi: 10.3390/e18070237. DOI
Senkov O.N., Wilks G., Miracle D., Chuang C., Liaw P. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765. doi: 10.1016/j.intermet.2010.05.014. DOI
Born M., Korb J., Rafaja D., Dopita M., Schülein R.W. Capability of thermodynamic calculation in the development of alloys for deposition of corrosion-protection coatings via thermal spraying. Mater. Corros. 2007;58:673–680. doi: 10.1002/maco.200704056. DOI
Zagorski A., Szuecs F., Balaschenko V., Siegmann S., Margandant N., Ivanov A. Proceedings of the 2003 International Thermal Spray Conference, ITSC 2003 International Thermal Spray Conference—Advancing the Science and Applying the Technology, Orlando, FL, USA, 5–8 May 2003. ASM International; Materials Park, OH, USA: 2003. Experimental study of substrate thermal conditions at APS and HVOF; pp. 1255–1260.
Fauchais P., Montavon G., Bertrand G. From Powders to Thermally Sprayed Coatings. J. Therm. Spray Technol. 2010;19:56–80. doi: 10.1007/s11666-009-9435-x. DOI
Valarezo A., Shinoda K., Sampath S. Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings. J. Therm. Spray Technol. 2020;29:1322–1338. doi: 10.1007/s11666-020-01073-y. DOI
Azizpour M.J., Rad M.T. The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings. Ceram. Int. 2019;45:13934–13941. doi: 10.1016/j.ceramint.2019.04.091. DOI
Sobolev V.V., Guilemany J.M., Calero J.A. Theoretical Investigation of the Gas-Powder Particles Transport Phenomena in HVOF Spraying. In: Berndt C.C., Sampath S., editors. Thermal Spray Industrial Applications: Proceedings, The 7th National Thermal Spray Conference, Boston, MA, USA, 20–24 June 1994. ASM International; Materials Park, OH, USA: 1994.
Planche M.P., Liao H., Normand B., Coddet C. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surf. Coat. Technol. 2005;200:2465–2473. doi: 10.1016/j.surfcoat.2004.08.224. DOI
Karimi M.R., Salimijazi H.R., Golozar M.A. Effects of remelting processes on porosity of NiCrBSi flame sprayed coatings. Surf. Eng. 2016;32:238–243. doi: 10.1179/1743294415Y.0000000107. DOI
Flores G., Wiens A., Waiblinger M. Machining and Characterization of Functional Surfaces of Thermal-Coated Cylinder Bores. In: CHa S.C., Erdemir A., editors. Coating Technology for Vehicle Applications. Springer International Publishing; Cham, Switzerland: 2015. pp. 149–162.
Benedek G. Surface Properties of Layered Structures. Kluwer; Boston, MA, USA: 1992.
Klocke F., Lung D., Binder M., Seimann M. High speed machining of nickel-based alloys. Int. J. Mechatron. Manuf. Syst. 2015;8:3. doi: 10.1504/IJMMS.2015.071687. DOI
Ezugwu E., Pashby I. High speed milling of nickel-based superalloys. J. Mater. Process. Technol. 1992;33:429–437. doi: 10.1016/0924-0136(92)90277-Y. DOI
Arunachalam R., Mannan M. Machinability of Nickel-Based High Temperature Alloys. Mach. Sci. Technol. 2000;4:127–168. doi: 10.1080/10940340008945703. DOI
Pervaiz S., Rashid A., Deiab I., Nicolescu M. Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review. Mater. Manuf. Process. 2014;29:219–252. doi: 10.1080/10426914.2014.880460. DOI
Barthelmä F., Frank H., Schiffler M., Bartsch A. Hard Coatings to Improve the Machining of Nickel Based Materials. Procedia CIRP. 2016;46:294–298. doi: 10.1016/j.procir.2016.04.069. DOI
Valíček J., Řehoř J., Harničárová M., Gombár M., Kušnerová M., Fulemová J., Vagaská A. Investigation of Surface Roughness and Predictive Modelling of Machining Stellite 6. Materials. 2019;12:2551. doi: 10.3390/ma12162551. PubMed DOI PMC
Valíček J., Harničárová M., Řehoř J., Kušnerová M., Gombár M., Drbúl M., Šajgalík M., Filipenský J., Fulemová J., Vagaská A. Prediction of Cutting Parameters of HVOF-Sprayed Stellite 6. Appl. Sci. 2020;10:2524. doi: 10.3390/app10072524. DOI
Valíček J., Harničárová M., Řehoř J., Kušnerová M., Fulemová J., Gombár M., Kučerová L., Filipenský J., Hnátík J. Milling of Complex Surfaces of EN 10060 Steel after HVOF Sprayed NiCrBSi Coatings. Coatings. 2020;10:744. doi: 10.3390/coatings10080744. PubMed DOI PMC
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials. 9,073,175. U.S. Patent. 2015 Jul 7
Valíček J., Borovička A., Hloch S., Hlaváček P. Method for the Design of a Technology for the Abrasive Waterjet Cutting of Materials Kawj. CZ 305514 B6. Czech Republic Patent. 2010 Jul 23