Effect of Additives and Print Orientation on the Properties of Laser Sintering-Printed Polyamide 12 Components

. 2022 Mar 15 ; 14 (6) : . [epub] 20220315

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35335502

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 nnovative and additive manufacturing technology: new technological solutions for 3D printing of metals and composite materials

3D printing, also known as additive manufacturing, is becoming increasingly popular for prototype processing in industrial practice. Laser sintering, which is a laser powder bed fusion technique, is a versatile and common 3D printing technology, which enables compact and high-quality products. Polyamide 12, a popular 3D printing material, provides reliable mechanical and thermal properties. Weaknesses in applying this technology for polyamide 12 include incomplete information regarding the application of various types of additives and different printing orientations with respect to the properties. This study aimed to investigate the influence of various additives (including carbon fiber, glass fiber, flame retardant, and aluminum powder) combined with polyamide 12, using processing of predefined powder refreshing mixture on the properties of a finished product. The thermal, surface, and mechanical properties of samples printed with five different polyamides 12-based powders at three different print orientations were investigated. It was found that the inclusion of additives decreases the tensile strength and increases the surface roughness of printed components-however, the toughness increases. The results can assist designers in selecting an appropriate material that will produce a finished part with the required properties for a given application.

Zobrazit více v PubMed

Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC

Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI

Tomanik M., Żmudzińska M., Wojtków M. Mechanical and Structural Evaluation of the PA12 Desktop Selective Laser Sintering Printed Parts Regarding Printing Strategy. 3D Print. Addit. Manuf. 2021;8:271–279. doi: 10.1089/3dp.2020.0111. PubMed DOI PMC

Salmoria G.V., Ahrens C.H., Klauss P., Paggi R.A., Oliveira R.G., Lago A. Rapid manufacturing of polyethylene parts with controlled pore size gradients using selective laser sintering. Mater. Res. 2007;10:211–214. doi: 10.1590/S1516-14392007000200019. DOI

Bai J., Zhang B., Song J., Bi G., Wang P., Wei J. The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering. Polym. Test. 2016;52:89–93. doi: 10.1016/j.polymertesting.2016.04.004. DOI

Rimell J.T., Marquis P.M. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2000;53:414–420. doi: 10.1002/1097-4636(2000)53:4<414::AID-JBM16>3.0.CO;2-M. PubMed DOI

Tan W.S., Chua C.K., Chong T.H., Fane A.G., Jia A. 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. Virtual Phys. Prototyp. 2016;11:151–158. doi: 10.1080/17452759.2016.1211925. DOI

Zhu W., Yan C., Shi Y., Wen S., Han C., Cai C., Liu J., Shi Y. Study on the selective laser sintering of a low-isotacticity polypropylene powder. Rapid Prototyp. J. 2016;22:621–629. doi: 10.1108/RPJ-02-2015-0014. DOI

Zhu W., Yan C., Shi Y., Wen S., Liu J., Shi Y. Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts. Mater. Des. 2015;82:37–45. doi: 10.1016/j.matdes.2015.05.043. DOI

Verbelen L., Dadbakhsh S., Van den Eynde M., Strobbe D., Kruth J.-P., Goderis B., Van Puyvelde P. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Addit. Manuf. 2017;15:12–19. doi: 10.1016/j.addma.2017.03.001. DOI

Kummert C., Josupeit S., Schmid H.-J. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering. JOM. 2018;70:425–430. doi: 10.1007/s11837-017-2658-2. DOI

Yuan S., Shen F., Bai J., Chua C.K., Wei J., Zhou K. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Mater. Des. 2017;120:317–327. doi: 10.1016/j.matdes.2017.01.098. DOI

Toncheva A., Brison L., Dubois P., Laoutid F. Recycled tire rubber in additive manufacturing: Selective laser sintering for polymer-ground rubber composites. Appl. Sci. 2021;11:8778. doi: 10.3390/app11188778. DOI

Parandoush P., Lin D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 2017;182:36–53. doi: 10.1016/j.compstruct.2017.08.088. DOI

Goodridge R.D., Tuck C.J., Hague R.J.M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012;57:229–267. doi: 10.1016/j.pmatsci.2011.04.001. DOI

Stichel T., Frick T., Laumer T., Tenner F., Hausotte T., Merklein M., Schmidt M. A Round Robin study for Selective Laser Sintering of polyamide 12: Microstructural origin of the mechanical properties. Opt. Laser Technol. 2017;89:31–40. doi: 10.1016/j.optlastec.2016.09.042. DOI

Shi Y., Li Z., Sun H., Huang S., Zeng F. Effect of the properties of the polymer materials on the quality of selective laser sintering parts. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2004;218:247–252. doi: 10.1177/146442070421800308. DOI

Osswald P.V., Obst P., Capote G.A.M., Friedrich M., Rietzel D., Witt G. Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Addit. Manuf. 2021;37:101668. doi: 10.1016/j.addma.2020.101668. DOI

Dupin S., Lame O., Barrès C., Charmeau J.-Y. Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur. Polym. J. 2012;48:1611–1621. doi: 10.1016/j.eurpolymj.2012.06.007. DOI

Majewski C., Zarringhalam H., Hopkinson N. Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008;222:1055–1064. doi: 10.1243/09544054JEM1122. DOI

Caulfield B., McHugh P.E., Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 2007;182:477–488. doi: 10.1016/j.jmatprotec.2006.09.007. DOI

Chen P., Tang M., Zhu W., Yang L., Wen S., Yan C., Ji Z., Nan H., Shi Y. Systematical mechanism of Polyamide-12 aging and its micro-structural evolution during laser sintering. Polym. Test. 2018;67:370–379. doi: 10.1016/j.polymertesting.2018.03.035. DOI

Dadbakhsh S., Verbelen L., Verkinderen O., Strobbe D., Van Puyvelde P., Kruth J.-P. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts. Eur. Polym. J. 2017;92:250–262. doi: 10.1016/j.eurpolymj.2017.05.014. DOI

Hong R., Zhao Z., Leng J., Wu J., Zhang J. Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network. Compos. Part B Eng. 2019;176:107214. doi: 10.1016/j.compositesb.2019.107214. DOI

Hui D., Goodridge R.D., Scotchford C.A., Grant D.M. Laser sintering of nano-hydroxyapatite coated polyamide 12 powders. Addit. Manuf. 2018;22:560–570. doi: 10.1016/j.addma.2018.05.045. DOI

Schmid M., Wegener K. AIP Conference Proceedings. Volume 1779. AIP Publishing LLC; Arlington, TX, USA: 2016. Thermal and molecular properties of polymer powders for Selective Laser Sintering (SLS) p. 100003.

O’Connor H.J., Dowling D.P. Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process. Addit. Manuf. 2020;31:100961.

Mazzoli A., Moriconi G., Pauri M.G. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater. Des. 2007;28:993–1000. doi: 10.1016/j.matdes.2005.11.021. DOI

Salmoria G.V., Paggi R.A., Lago A., Beal V.E. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym. Test. 2011;30:611–615. doi: 10.1016/j.polymertesting.2011.04.007. DOI

Yi X., Tan Z.-J., Yu W.-J., Li J., Li B.-J., Huang B.-Y., Liao J. Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon N. Y. 2016;96:603–607. doi: 10.1016/j.carbon.2015.09.110. DOI

Türk D.-A., Brenni F., Zogg M., Meboldt M. Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Mater. Des. 2017;118:256–265. doi: 10.1016/j.matdes.2017.01.050. DOI

Athreya S.R., Kalaitzidou K., Das S. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng. A. 2010;527:2637–2642. doi: 10.1016/j.msea.2009.12.028. DOI

Guo B., Xu Z., Luo X., Bai J. A detailed evaluation of surface, thermal, and flammable properties of polyamide 12/glass beads composites fabricated by multi jet fusion. Virtual Phys. Prototyp. 2021;16:S39–S52. doi: 10.1080/17452759.2021.1899463. DOI

Cai C., Tey W.S., Chen J., Zhu W., Liu X., Liu T., Zhao L., Zhou K. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 2021;288:116882. doi: 10.1016/j.jmatprotec.2020.116882. DOI

Salmoria G.V., Leite J.L., Vieira L.F., Pires A.T.N., Roesler C.R.M. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polym. Test. 2012;31:411–416. doi: 10.1016/j.polymertesting.2011.12.006. DOI

Stoia D.I., Marsavina L., Linul E. Mode I fracture toughness of polyamide and alumide samples obtained by Selective Laser Sintering additive process. Polymers. 2020;12:640. doi: 10.3390/polym12030640. PubMed DOI PMC

Păcurar R., Berce P., Petrilak A., Nemeş O., Borzan C.Ş.M., Harničárová M., Păcurar A. Selective Laser Melting of PA 2200 for Hip Implant Applications: Finite Element Analysis, Process Optimization, and Morphological and Mechanical Characterization. Materials. 2021;14:4240. doi: 10.3390/ma14154240. PubMed DOI PMC

Simha Martynková G., Slíva A., Kratošová G., Čech Barabaszová K., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC

Nakonieczny D.S., Kern F., Dufner L., Antonowicz M., Matus K. Alumina and Zirconia-Reinforced Polyamide PA-12 Composites for Biomedical Additive Manufacturing. Materials. 2021;14:6201. doi: 10.3390/ma14206201. PubMed DOI PMC

Hao W., Liu Y., Wang T., Guo G., Chen H., Fang D. Failure analysis of 3D printed glass fiber/PA12 composite lattice structures using DIC. Compos. Struct. 2019;225:111192. doi: 10.1016/j.compstruct.2019.111192. DOI

Bochnia J., Blasiak M., Kozior T. Tensile strength analysis of thin-walled polymer glass fiber reinforced samples manufactured by 3D printing technology. Polymers. 2020;12:2783. doi: 10.3390/polym12122783. PubMed DOI PMC

Dzienniak D., Pawlik J. MATEC Web of Conferences. Volume 338 EDP Sciences; Les Ulis, France: 2021. Analysis of the surface quality of polycaprolactam 3D prints enriched with carbon and glass fiber.

Ranganathan S., Thangaraj H.N.R.S., Vasudevan A.K., Shanmugan D.K. Analogy of Thermal Properties of Polyamide 6 Reinforced with Glass Fiber and Glass Beads through FDM Process. SAE Tech. Pap. 2019;5:0137.

Imaeda Y., Todoroki A., Matsuzaki R., Ueda M., Hirano Y. Modified Moving Particle Semi-implicit Method for 3D Print Process Simulations of Short Carbon Fiber/Polyamide-6 Composites. Compos. Part C Open Access. 2021;6:100195. doi: 10.1016/j.jcomc.2021.100195. DOI

Iizuka K., Todoroki A., Takahashi T., Ueda M. Reverse piezo-resistivity of 3D printed continuous carbon fiber/PA6 composites in a low stress range. Adv. Compos. Mater. 2021;30:380–395. doi: 10.1080/09243046.2020.1848314. DOI

Liu T., Tian X., Zhang Y., Cao Y., Li D. High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites. Compos. Part A Appl. Sci. Manuf. 2020;130:105770. doi: 10.1016/j.compositesa.2020.105770. DOI

Liao G., Li Z., Cheng Y., Xu D., Zhu D., Jiang S., Guo J., Chen X., Xu G., Zhu Y. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater. Des. 2018;139:283–292. doi: 10.1016/j.matdes.2017.11.027. DOI

Van de Werken N., Tekinalp H., Khanbolouki P., Ozcan S., Williams A., Tehrani M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2020;31:100962. doi: 10.1016/j.addma.2019.100962. DOI

Zhou W.D., Chen J.S. Materials Science Forum. Volume 913. Trans Tech Publ.; Bäch, Switzerland: 2018. 3D printing of carbon fiber reinforced plastics and their applications; pp. 558–563.

Batistella M., Pucci M., Regazzi A., Lopez-Cuesta J.-M., Kadri O., Bordeaux D. PA 12 nanocomposites and flame retardants compositions processed through selective laser sintering; Proceedings of the Eurofillers Polymerblends 2019; Palermo, Italy. 23–26 April 2019.

Batistella M., Regazzi A., Pucci M.F., Lopez-Cuesta J.-M., Kadri O., Bordeaux D., Ayme F. Selective laser sintering of polyamide 12/flame retardant compositions. Polym. Degrad. Stab. 2020;181:109318. doi: 10.1016/j.polymdegradstab.2020.109318. DOI

Navale S.V. Master’s Thesis. Texas State University; San Marcos, TX, USA: 2018. Feasibility Study of Thermoplastic Nanocomposite for ESD Applications Using Additive Manufacturing.

Espera A.H., Jr., Valino A.D., Palaganas J.O., Souza L., Chen Q., Advincula R.C. 3D Printing of a Robust Polyamide-12-Carbon Black Composite via Selective Laser Sintering: Thermal and Electrical Conductivity. Macromol. Mater. Eng. 2019;304:1800718. doi: 10.1002/mame.201800718. DOI

PA 12—PA2200: Nylon for Industrial 3D Printing|EOS GmbH. Polyamide 12 for 3D Printing. [(accessed on 11 March 2021)]. Available online: https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/sls-polymer-materials/polyamide-pa-12-alumide.

ALM—Advanced Laser Materials PA 640—GSL. [(accessed on 15 March 2021)]. Available online: https://www.advancedlasermaterials.com/wp-content/uploads/2021/05/PA-640-GSL-Data-Sheet-2021.pdf.

EOS GmbH—Electro Optical Systems EOS Parameter Sheet. Machine, Software and Material Parameters. [(accessed on 15 March 2021)]. Available online: https://3dagainstcorona.eos.info/subdomain/subdomain_corona/pdf/shield_parameter_sheet.pdf.

EOS GmbH SLS Printer FORMIGA P 110 Velocis. [(accessed on 15 March 2021)]. Available online: https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis.

EOS GmbH Plastic 3D Printer for Industrial Applications. [(accessed on 15 March 2021)]. Available online: https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/eos-p-396.

Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO; Prague, Czech Republic: 2019.

Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 1: Indication of Surface Texture. ISO; Brussels, Belgium: 2016.

Schmid M., Amado A., Wegener K. AIP Conference Proceedings. Volume 1664. AIP Publishing LLC; Arlington, TX, USA: 2015. Polymer powders for selective laser sintering (SLS) p. 160009.

Rhee S., White J.L. Crystal structure and morphology of biaxially oriented polyamide 12 films. J. Polym. Sci. Part B Polym. Phys. 2002;40:1189–1200. doi: 10.1002/polb.10181. DOI

Kwaśniewska A., Chocyk D., Gładyszewski G., Borc J., Świetlicki M., Gładyszewska B. The influence of kaolin clay on the mechanical properties and structure of thermoplastic starch films. Polymers. 2020;12:73. doi: 10.3390/polym12010073. PubMed DOI PMC

Chacón J.M., Caminero M.A., Núñez P.J., García-Plaza E., García-Moreno I., Reverte J.M. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. Compos. Sci. Technol. 2019;181:107688. doi: 10.1016/j.compscitech.2019.107688. DOI

Alscher G. Das Verhalten teilkristalliner Thermoplaste Beim Lasersintern. Universität-GH Essen; Aachen, Germany: 2000.

Stieß M. Mechanische Verfahrenstechnik-Partikeltechnologie 1. Springer; Berlin/Heidelberg, Germany: 2008.

Salmoria G.V., Leite J.L., Ahrens C.H., Lago A., Pires A.T.N. Rapid manufacturing of PA/HDPE blend specimens by selective laser sintering: Microstructural characterization. Polym. Test. 2007;26:361–368. doi: 10.1016/j.polymertesting.2006.12.002. DOI

Tiwari S.K., Pande S., Agrawal S., Bobade S.M. Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 2015;21:630–648. doi: 10.1108/RPJ-03-2013-0027. DOI

Negi S., Dhiman S., Sharma R.K. Investigating the surface roughness of SLS fabricated glass-filled polyamide parts using response surface methodology. Arab. J. Sci. Eng. 2014;39:9161–9179. doi: 10.1007/s13369-014-1434-7. DOI

Jing W., Hui C., Qiong W., Hongbo L., Zhanjun L. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder. Mater. Des. 2017;116:253–260. doi: 10.1016/j.matdes.2016.12.037. DOI

Zhou H., Götzinger M., Peukert W. The influence of particle charge and roughness on particle–substrate adhesion. Powder Technol. 2003;135:82–91. doi: 10.1016/j.powtec.2003.08.007. DOI

Toth-Taşcău M., Raduta A., Stoia D.I., Locovei C. Solid State Phenomena. Volume 188. Trans Tech Publ.; Bäch, Switzerland: 2012. Influence of the energy density on the porosity of Polyamide parts in SLS process; pp. 400–405.

Korifi R., Le Dréau Y., Antinelli J.-F., Valls R., Dupuy N. CIEL⁎ a⁎ b⁎ color space predictive models for colorimetry devices–Analysis of perfume quality. Talanta. 2013;104:58–66. doi: 10.1016/j.talanta.2012.11.026. PubMed DOI

Bian L., Taheri F., Lu Y. Analytical and experimental evaluations of the influence of fracture surface roughness, its sliding actions and the associated plasticity on fatigue crack propagation. Int. J. Plast. 2008;24:302–326. doi: 10.1016/j.ijplas.2007.04.001. DOI

Alsoufi M.S., Elsayed A.E. How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+ is influenced by measuring direction. Am. J. Mech. Eng. 2017;5:211–222.

Extrand C.W. Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir. 2002;18:7991–7999. doi: 10.1021/la025769z. DOI

Baschek G., Hartwig G., Zahradnik F. Effect of water absorption in polymers at low and high temperatures. Polymer. 1999;40:3433–3441. doi: 10.1016/S0032-3861(98)00560-6. DOI

Ma Y., Cao X., Feng X., Ma Y., Zou H. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer. 2007;48:7455–7460. doi: 10.1016/j.polymer.2007.10.038. DOI

Modi U., Prakash S. AIP Conference Proceedings. Volume 2148. AIP Publishing LLC; Arlington, TX, USA: 2019. Wettability of 3D printed polylactic acid (PLA) parts; p. 30052.

Do V.-T., Nguyen-Tran H.-D., Chun D.-M. Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Compos. Struct. 2016;150:240–245. doi: 10.1016/j.compstruct.2016.05.011. DOI

Xu Z., Wang Y., Wu D., Ananth K.P., Bai J. The process and performance comparison of polyamide 12 manufactured by multi jet fusion and selective laser sintering. J. Manuf. Process. 2019;47:419–426. doi: 10.1016/j.jmapro.2019.07.014. DOI

Hou G., Zhu H., Xie D. IOP Conference Series: Earth and Environmental Science. Volume 571. IOP Publishing; Bristol, UK: 2020. The Influence of SLS Process Parameters on the Tensile Strength of PA2200 Powder; p. 12111.

Scrivener K., Ouzia A., Juilland P., Mohamed A.K. Advances in understanding cement hydration mechanisms. Cem. Concr. Res. 2019;124:105823. doi: 10.1016/j.cemconres.2019.105823. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...