Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EF16_013/0001791
ERDF
CZ.02.1.01/0.0/0.0/17_049/0008407
ERDF
SP2020/72
MEYS
2020/08
MEYS
SP2020/90
MEYS
PubMed
33800854
PubMed Central
PMC7961997
DOI
10.3390/polym13050810
PII: polym13050810
Knihovny.cz E-zdroje
- Klíčová slova
- 3D print, PA12, morphology, structure,
- Publikační typ
- časopisecké články MeSH
The polyamide (PA)-12 material used for additive manufacturing was studied in aspects of morphology and their structural properties for basic stages received during 3D laser printing. Samples were real, big-scale production powders. The structure of polymer was evaluated from the crystallinity point of view using XRD, FTIR, and DSC methods and from the surface properties using specific surface evaluation and porosity. Scanning electron microscopy was used to observe morphology of the surface and evaluate the particle size and shape via image analysis. Results were confronted with laser diffraction particles size measurement along with an evaluation of the specific surface area. Fresh PA12 powder was found as inhomogeneous in particle size of material with defective particles, relatively high specific surface, high lamellar crystallite size, and low crystallinity. The scrap PA12 crystallinity was about 2% higher than values for fresh PA12 powder. Particles had a very low, below 1 m2/g, specific surface area; particles sintered as twin particles and often in polyhedral shapes.
Zobrazit více v PubMed
Zhang X., Fan W., Liu T. Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos. Commun. 2020;21:100413. doi: 10.1016/j.coco.2020.100413. DOI
Balemans C., Looijmans S.F.S.P., Grosso G., Hulsen M.A., Anderson P.D. Numerical analysis of the crystallization kinetics in SLS. Addit. Manuf. 2020;33:101126. doi: 10.1016/j.addma.2020.101126. DOI
Bandyopadhyay A., Bose S. Additive Manufacturing. CRC Press; Boca Raton, FL, USA: Francis and Taylor; Abingdon, UK: 2016.
Tofail S.A.M., Koumoulos E.P., Bandyopadhyay A., Bose S., O’Donoghue L., Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today. 2018;21:22–37. doi: 10.1016/j.mattod.2017.07.001. DOI
Awad A., Fina F., Goyanes A., Gaisford S., Basit A.W. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Intern. J. Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594. PubMed DOI
Tan L.J., Zhu W., Sagar K., Zhou K. Comparative study on the selective laser sintering of polypropylene homopolymer and copolymer: Processability, crystallization kinetics, crystal phases and mechanical properties. Addit. Manuf. 2020:101610. doi: 10.1016/j.addma.2020.101610. DOI
Mwania F.M., Maringa M., van der Walt K. A Review of Methods Used to Reduce the Effects of High Temperature Associated with Polyamide 12 and Polypropylene Laser Sintering. Adv. Polym. Technol. 2020:9497158. doi: 10.1155/2020/9497158. DOI
Yang F., Jiang T., Lalier G., Bartolone J., Chen X. A process control and interlayer heating approach to reuse polyamide 12 powders and create parts with improved mechanical properties in selective laser sintering. J. Manuf. Process. 2020;57:828–846. doi: 10.1016/j.jmapro.2020.07.051. DOI
Ligon S.C., Liska R., Stampf J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074. PubMed DOI PMC
Chen P., Wu H., Zhu W., Yang L., Li Z., Yan C., Wen S., Shi Y. Investigation into the processability, recyclability and crystalline structure of selective laser sintered Polyamide 6 in comparison with Polyamide 12. Polym. Test. 2018;69:366–374. doi: 10.1016/j.polymertesting.2018.05.045. DOI
Touris A., Turcios A., Mintz E., Pulugurtha S.R., Thor P., Jolly M., Jalgaonkar U. Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results Mater. 2020;8:100149. doi: 10.1016/j.rinma.2020.100149. DOI
Slíva A., Brázda R., Procházka A., Martynková G.S. Study of the optimum arrangement of spherical particles in containers having different cross section shapes. J. Nanosci. Nanotechnol. 2019;19:2717–2722. doi: 10.1166/jnn.2019.15873. PubMed DOI
Slíva A., Samolejová A., Brázda R., Zegzulka J., Polák J. Microwave and Optical Technology 2003; Proceeding of International Society for Optics and Photonics 2004, Ostrava, Czech Republic, 7 April 2004. Volume 5445. Photo-Optical Instrumentation Engineers (SPIE); Bellingham, WA, USA: 2004. Optical parameter adjustment for silica nano-and micro-particle size distribution measurement using Mastersizer 2000; pp. 160–163. DOI
Yang F., Jiang T., Lalier G., Bartolone J., Chen X. Process control of surface quality and part microstructure in selective laser sintering involving highly degraded polyamide 12 materials. Polym. Test. 2021;93:106920. doi: 10.1016/j.polymertesting.2020.106920. DOI
Berretta S., Ghita O., Evans K.E. Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. Eur. Polym. J. 2014;59:218–229. doi: 10.1016/j.eurpolymj.2014.08.004. DOI
Feng J.Q., Hays D.A. Relative importance of electrostatic forces on powder particles. Powder Technol. 2003;135–136:65–75. doi: 10.1016/j.powtec.2003.08.005. DOI
Balemans C., Jaensson N.O., Hulsen M.A., Anderson P.D. Temperature-dependent sintering of two viscous particles. Addit. Manuf. 2018;24:528–542. doi: 10.1016/j.addma.2018.09.005. DOI
ISO . ISO 13320-1: 2009 Particle Size Analysis. Laser Diffraction Methods. Part 1: General Principles. ISO; Prague, Czech Republic: 2009.
Chen P., Zhu W., Yang L., Wen S., Yan C., Ji Z., Nan H., Shi Y. Systematical mechanism of Polyamide-12 aging and its micro-structural evolution during laser sintering. Polym. Test. 2018;67:370–379. doi: 10.1016/j.polymertesting.2018.03.035. DOI
Inoue K., Hoshino S. Crystal structure of nylon 12. J. Polym. Sci. Part. B. 1973;11:1077–1089. doi: 10.1002/pol.1973.180110604. DOI
Li L., Koch M.H.J., de Jeu W.H. Crystalline Structure and Morphology in Nylon-12: A Small- and Wide-Angle X-ray Scattering Study. Macromolecules. 2003;36:1626–1632. doi: 10.1021/ma025732l. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts. 3rd ed. John Wiley & Sons; Chichester, UK: 2001.
Dadbakhsh S., Verbelen L., Verkinderen O., Strobbe D., Van Puyveldeb P., Kruth J.-P. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts. Eur. Polym. J. 2017;92:250–262. doi: 10.1016/j.eurpolymj.2017.05.014. DOI
Ishikawa T., Nagai S., Kasai N. Thermal behavior of alpha Nylon-12. J. Polym. Sci. Polym. Phys. 1980;18:1413–1419. doi: 10.1002/pol.1980.180180619. DOI
Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing