Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing

. 2022 Aug 03 ; 15 (15) : . [epub] 20220803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35955281

Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out. Heat treatment up to 950 °C in an air atmosphere revealed the properties of powders that can appear during laser sintering. The powders in the oxidizing atmosphere change the phase composition and the original FeNiCr stainless steel changes to a two-phase system of Fe3Ni and Cr2O3, as evaluated by X-ray diffraction analysis. Observation of the morphology showed the separation of the oxidic phase in the sense of a brittle shell. The inner part of the powder particle is a porous compact core. The particle size is generally reduced due to the peeling of the oxide shell. This effect can be critical to 3D printing processing, causing defects on the printed parts, as well as reducing the usability of the precursor powder and can also change the properties of the printed part.

Zobrazit více v PubMed

Blakey-Milner B., Gradl P., Snedden G., Brooks M., Pitot J., Lopez E., Leary M., Berto F., Plessis A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021;209:110008. doi: 10.1016/j.matdes.2021.110008. DOI

Gisario A., Kazarian M., Martina F., Mehrpouya M. Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 2019;53:124–149. doi: 10.1016/j.jmsy.2019.08.005. DOI

Vafadar A., Guzzomi F., Rassau A., Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021;11:1213. doi: 10.3390/app11031213. DOI

Moghimian P., Poirié T., Habibnejad-Korayem M., Zavala J.A., Kroeger J., Marion F., Larouche F. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit. Manuf. 2021;43:102017. doi: 10.1016/j.addma.2021.102017. DOI

Martynková G.S., Slíva A., Kratošová G., Čech Barabaszová K., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC

Baumers M., Dickens P., Tuck C., Hague R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016;102:193–201. doi: 10.1016/j.techfore.2015.02.015. DOI

Peng T., Kellens K., Tang R., Chen C., Chen G. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit. Manuf. 2018;21:694–704. doi: 10.1016/j.addma.2018.04.022. DOI

Slíva A., Samolejová A., Brázda R., Zegzulka J., Polák J. Optical parameter adjustment for silica nano-and micro-particle size distribution measurement using Mastersizer 2000. Proc. SPIE Microw. Opt. Technol. 2003. 2004;5445:160–163.

Perumal V.I., Najafi A.R., Kontsos A. A Novel Digital Design Approach for Metal Additive Manufacturing to Address Local Thermal Effects. Designs. 2020;4:41. doi: 10.3390/designs4040041. DOI

Jordanovová V., Losertová M., Štencek M., Lukášová T., Martynková G.S., Peikertová P. Microstructure and Properties of Nanostructured Coating on Ti6Al4V. Materials. 2020;13:708. doi: 10.3390/ma13030708. PubMed DOI PMC

Körner C., Markl M., Koepf J.A. Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review. Metall. Mater. Trans. A. 2020;51:4970–4983. doi: 10.1007/s11661-020-05946-3. DOI

Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI

Omiyale B.O., Olugbade T.O., Abioye T.E., Farayibi P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022;38:391–408. doi: 10.1080/02670836.2022.2045549. DOI

Slíva A., Brázda R., Procházka A., Martynková G.S., Čech Barabaszová K. Study of the optimum arrangement of spherical particles in containers having different cross section shapes. J. Nanosci. Nanotechnol. 2019;19:2717–2722. doi: 10.1166/jnn.2019.15873. PubMed DOI

Moyle M., Ledermueller C., Zou Z., Primig S., Haghdadi N. Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion. Mater. Charact. 2022;184:111663. doi: 10.1016/j.matchar.2021.111663. DOI

Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI

Astafurov S., Astafurova E. Phase Composition of Austenitic Stainless Steels in Additive Manufacturing: A Review. Metals. 2021;11:1052. doi: 10.3390/met11071052. DOI

Qin J., Hu F., Liu Y., Witherell P., Wang C.C.L., Rosen D.W., Simpson T.W., Lu Y., Tang Q. Research and application of machine learning for additive manufacturing, Addit. Manuf. 2022;52:102691.

Powell D., Rennie A.E.W., Geekie L., Burns N. Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J. Clean. Prod. 2020;268:122077. doi: 10.1016/j.jclepro.2020.122077. DOI

Dong Z., Kang H., Xie Y., Chi C., Peng X. Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel. Mater. Lett. 2019;236:214–217. doi: 10.1016/j.matlet.2018.10.091. DOI

Ibrahim K.A., Wu B., Brandon N.P. Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering. Mater. Des. 2016;106:51–59. doi: 10.1016/j.matdes.2016.05.096. DOI

Makhlouf S.A., Bakr Z.H., Al-Attar H., Moustafa M.S. Structural, morphological and electrical properties of Cr2O3 nanoparticles. Mat. Sci. Eng. B. 2013;178:337–343. doi: 10.1016/j.mseb.2013.01.012. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C

. 2022 Dec 12 ; 15 (24) : . [epub] 20221212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...