Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35955281
PubMed Central
PMC9369870
DOI
10.3390/ma15155343
PII: ma15155343
Knihovny.cz E-zdroje
- Klíčová slova
- 316 L stainless steel powder, 3D printing, heat treatment, morphology, oxidation, particle size,
- Publikační typ
- časopisecké články MeSH
Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out. Heat treatment up to 950 °C in an air atmosphere revealed the properties of powders that can appear during laser sintering. The powders in the oxidizing atmosphere change the phase composition and the original FeNiCr stainless steel changes to a two-phase system of Fe3Ni and Cr2O3, as evaluated by X-ray diffraction analysis. Observation of the morphology showed the separation of the oxidic phase in the sense of a brittle shell. The inner part of the powder particle is a porous compact core. The particle size is generally reduced due to the peeling of the oxide shell. This effect can be critical to 3D printing processing, causing defects on the printed parts, as well as reducing the usability of the precursor powder and can also change the properties of the printed part.
Zobrazit více v PubMed
Blakey-Milner B., Gradl P., Snedden G., Brooks M., Pitot J., Lopez E., Leary M., Berto F., Plessis A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021;209:110008. doi: 10.1016/j.matdes.2021.110008. DOI
Gisario A., Kazarian M., Martina F., Mehrpouya M. Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 2019;53:124–149. doi: 10.1016/j.jmsy.2019.08.005. DOI
Vafadar A., Guzzomi F., Rassau A., Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021;11:1213. doi: 10.3390/app11031213. DOI
Moghimian P., Poirié T., Habibnejad-Korayem M., Zavala J.A., Kroeger J., Marion F., Larouche F. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit. Manuf. 2021;43:102017. doi: 10.1016/j.addma.2021.102017. DOI
Martynková G.S., Slíva A., Kratošová G., Čech Barabaszová K., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC
Baumers M., Dickens P., Tuck C., Hague R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016;102:193–201. doi: 10.1016/j.techfore.2015.02.015. DOI
Peng T., Kellens K., Tang R., Chen C., Chen G. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit. Manuf. 2018;21:694–704. doi: 10.1016/j.addma.2018.04.022. DOI
Slíva A., Samolejová A., Brázda R., Zegzulka J., Polák J. Optical parameter adjustment for silica nano-and micro-particle size distribution measurement using Mastersizer 2000. Proc. SPIE Microw. Opt. Technol. 2003. 2004;5445:160–163.
Perumal V.I., Najafi A.R., Kontsos A. A Novel Digital Design Approach for Metal Additive Manufacturing to Address Local Thermal Effects. Designs. 2020;4:41. doi: 10.3390/designs4040041. DOI
Jordanovová V., Losertová M., Štencek M., Lukášová T., Martynková G.S., Peikertová P. Microstructure and Properties of Nanostructured Coating on Ti6Al4V. Materials. 2020;13:708. doi: 10.3390/ma13030708. PubMed DOI PMC
Körner C., Markl M., Koepf J.A. Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review. Metall. Mater. Trans. A. 2020;51:4970–4983. doi: 10.1007/s11661-020-05946-3. DOI
Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI
Omiyale B.O., Olugbade T.O., Abioye T.E., Farayibi P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022;38:391–408. doi: 10.1080/02670836.2022.2045549. DOI
Slíva A., Brázda R., Procházka A., Martynková G.S., Čech Barabaszová K. Study of the optimum arrangement of spherical particles in containers having different cross section shapes. J. Nanosci. Nanotechnol. 2019;19:2717–2722. doi: 10.1166/jnn.2019.15873. PubMed DOI
Moyle M., Ledermueller C., Zou Z., Primig S., Haghdadi N. Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion. Mater. Charact. 2022;184:111663. doi: 10.1016/j.matchar.2021.111663. DOI
Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI
Astafurov S., Astafurova E. Phase Composition of Austenitic Stainless Steels in Additive Manufacturing: A Review. Metals. 2021;11:1052. doi: 10.3390/met11071052. DOI
Qin J., Hu F., Liu Y., Witherell P., Wang C.C.L., Rosen D.W., Simpson T.W., Lu Y., Tang Q. Research and application of machine learning for additive manufacturing, Addit. Manuf. 2022;52:102691.
Powell D., Rennie A.E.W., Geekie L., Burns N. Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J. Clean. Prod. 2020;268:122077. doi: 10.1016/j.jclepro.2020.122077. DOI
Dong Z., Kang H., Xie Y., Chi C., Peng X. Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel. Mater. Lett. 2019;236:214–217. doi: 10.1016/j.matlet.2018.10.091. DOI
Ibrahim K.A., Wu B., Brandon N.P. Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering. Mater. Des. 2016;106:51–59. doi: 10.1016/j.matdes.2016.05.096. DOI
Makhlouf S.A., Bakr Z.H., Al-Attar H., Moustafa M.S. Structural, morphological and electrical properties of Cr2O3 nanoparticles. Mat. Sci. Eng. B. 2013;178:337–343. doi: 10.1016/j.mseb.2013.01.012. DOI
Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C