Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C

. 2022 Dec 12 ; 15 (24) : . [epub] 20221212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556677

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008408 Czech Ministry of Education, Youth and Sports
IGA_PrF_2022_003 Palacký University

Stainless steels have the advantage of forming a protective surface layer to prevent corrosion. This layer results from phase and structural changes on the steel surface. Stainless steel samples (1.4404, 316L), whose alloying elements include Cr, Ni, Mo, and Mn, were subjected to the study of the surface layer. Prism-shaped samples (25 × 25 × 3) mm3 were made from CL20ES stainless steel powder, using selective laser melting. After sandblasting with corundum powder and annealing at 550 °C for different periods of time (2, 4, 8, 16, 32, 64, 128 h), samples were studied by conversion X-ray Mössbauer spectroscopy (CXMS), conversion electron Mössbauer spectroscopy (CEMS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The main topics of the research were surface morphology and elemental and phase composition. The annealing of stainless steel samples resulted in a new surface layer comprising leaf-shaped crystals made of chromium oxide. The crystals grew, and their number increased as annealing time was extended. The amount of chromium increased in the surface layer at the expense of iron and nickel, and the longer the annealing time was set, the more chromium was observed in the surface layer. Iron compounds (BCC iron, mixed Fe-Cr oxide) were found in the surface layer, in addition to chromium oxide. BCC iron appeared only after annealing for at least 4 h, which is the initial time of austenitic-ferritic transformation. Mixed Fe-Cr oxide was observed in all annealed samples. All phase changes were observed in the surface layer at approximately 0.6 µm depth.

Zobrazit více v PubMed

Bautista A., Velasco F., Campos M., Rabanal M.E., Torralba J.M. Oxidation Behavior at 900 °C of Austenitic, Ferritic, and Duplex Stainless Steels Manufactured by Powder Metallurgy. Oxid. Met. 2003;59:373–393. doi: 10.1023/A:1023000329514. DOI

Saeidi K., Gao X., Lofaj F., Kvetková L., Shen Z.J. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting. J. Alloys Compd. 2015;633:463–469. doi: 10.1016/j.jallcom.2015.01.249. DOI

Salman O.O., Gammer C., Chaubey A.K., Eckert J., Scudino S. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater. Sci. Eng. A. 2019;748:205–212. doi: 10.1016/j.msea.2019.01.110. DOI

Zhou Z., Wang S., Li J., Li Y., Wu X., Zhu Y. Hardening after annealing in nanostructured 316L stainless steel. Nano Mater. Sci. 2020;2:80–82. doi: 10.1016/j.nanoms.2019.12.003. DOI

Ivanova T., Mashlan M., Ingr T., Doláková H., Sarychev D., Sedláčková A. Mössbauer Spectroscopy for Additive Manufacturing by Selective Laser Melting. Metals. 2022;12:551. doi: 10.3390/met12040551. DOI

David S.A., Vitek J.M. Correlation between solidification parameters and weld microstructures. Int. Mater. Rev. 1989;34:213–245. doi: 10.1179/imr.1989.34.1.213. DOI

Elmer J.W., Allen S.M., Eagar T.W. Microstructural development during solidification of stainless steel alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1989;20:2117–2131. doi: 10.1007/BF02650298. DOI

Fu J.W., Yang Y.S., Guo J.J., Tong W.H. Effect of cooling rate on solidification microstructures in AISI 304 stainless steel. Mater. Sci. Technol. 2008;24:941–944. doi: 10.1179/174328408X295962. DOI

Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009;65:39–104. doi: 10.1016/j.mser.2009.03.001. DOI

Shrinivas V., Varma S.K., Murr L.E. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1995;26:661–671. doi: 10.1007/BF02663916. DOI

Wang H.S., Yang J.R., Bhadeshia H.K.D.H. Characterisation of severely deformed austenitic stainless steel wire. Mater. Sci. Technol. 2005;21:1323–1328. doi: 10.1179/174328405X63980. DOI

Barabaszová K.Č., Slíva A., Kratošová G., Holešová S., Volodarskaja A., Cetinkaya T., Brožová S., Kozubek L., Martynková G.S. Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing. Materials. 2022;15:5343. doi: 10.3390/ma15155343. PubMed DOI PMC

Zeng Q., Gan K., Wang Y. Effect of Heat Treatment on Microstructures and Mechanical Behaviors of 316L Stainless Steels Synthesized by Selective Laser Melting. J. Mater. Eng. Perform. 2021;30:409–422. doi: 10.1007/s11665-020-05330-7. DOI

Chao Q., Thomas S., Birbilis N., Cizek P., Hodgson P.D., Fabijanic D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 2021;821:141611. doi: 10.1016/j.msea.2021.141611. DOI

Lei J., Ge Y., Liu T., Wei Z. Effects of Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting 316L Stainless Steel. Shock. Vib. 2021;2021:6547213. doi: 10.1155/2021/6547213. DOI

Principi G. The Mössbauer Effect: A Romantic Scientific Page. Metals. 2020;10:992. doi: 10.3390/met10080992. DOI

Pechousek J., Mashlan M. Mössbauer spectrometer as a virtual instrument in the PXI/Compact PCI modular system. Czechoslov. J. Phys. 2005;55:853–863. doi: 10.1007/s10582-005-0087-x. DOI

Kholmetskii A.L., Misevich O.V., Mashlan M., Chudakov V.A., Anashkevich A.F., Gurachevskii V.L. Air scintillation detector for conversion electrons Mössbauer spectroscopy (CEMS) Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 1997;129:110–116. doi: 10.1016/S0168-583X(97)00161-4. DOI

Klencsár Z., Kuzmann E., Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI

Klencsár Z., Kuzmann E., Vértes A. User-Friendly Program for Multifold Evaluation of Mössbauer Spectra. Hyperfine Interact. 1998;112:269–274. doi: 10.1023/A:1010866928491. DOI

Castaing R. Ph.D. Thesis. University of Paris; Paris, France: 1952. Application des Sondes Electronique a Une Methode D’Analyse Ponctuelle Chimique et Cristallographique.

Cook D.C. Strain induced martensite formation in stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1987;18:201–210. doi: 10.1007/BF02825701. DOI

Lakatos-Varsányi M., Meisel W. Corrosion studies of a chromium steel in imitated seawater. J. Radioanal. Nucl. Chem. 2002;251:75–85. doi: 10.1023/A:1015098312110. DOI

Bowen L.H., De Grave E., Vandenkenberghe R.E. Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Plenum Press; New York, NY, USA: 1993. Mössbauer Effect Studies of Magnetic Soils and Sediments; pp. 115–159. DOI

Nomura K., Yamada Y., Tomita R., Yajima T., Mashlan M. CEMS study of stainless steel films depossited by pulsed laser ablation of AISI316. Czech. J. Phys. 2005;55:845–852. doi: 10.1007/s10582-005-0086-y. DOI

Klinger R., Ensling J., Jachow H., Meisel W., Schwab E., Gütlich P. 57Fe Mössbauer studies of α-(FexCr1-x)203 compounds. J. Magn. Magn. Mater. 1995;150:277–283. doi: 10.1016/0304-8853(95)00389-4. DOI

Bhattacharya A.K., Hartridge A., Mallick K.K., Majumdar C.K., Das D., Chintalapudi S.N. An X-ray Diffraction and Mössbauer Study of Nanocrystalline Fe2O3-Cr2O3 Solid Solutions. J. Mater. Sci. 1997;32:557–560. doi: 10.1023/A:1018506912078. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...