Using Mössbauer Spectroscopy to Evaluate the Influence of Heat Treatment on the Surface Characteristics of Additive Manufactured 316L Stainless Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008408
Czech Ministry of Education, Youth and Sports
PubMed
39063786
PubMed Central
PMC11278792
DOI
10.3390/ma17143494
PII: ma17143494
Knihovny.cz E-zdroje
- Klíčová slova
- Mössbauer spectroscopy, X-ray powder diffraction, annealing, energy-dispersive analysis, scanning electron microscopy, selective laser melting, stainless steel,
- Publikační typ
- časopisecké články MeSH
The oxidation behaviour of iron-based 316L stainless steel was investigated in the temperature range of 700 to 1000 °C. The test specimens in the shape of plates were produced by selective laser melting. After fabrication, the samples were sandblasted and then annealed in air for different periods of time (0.5, 2, 8, 32 h). Under the influence of temperature and time, stainless steels tend to form an oxide layer. Scanning electron microscopy, energy dispersive analysis, and X-ray diffraction were employed to analyse the composition of this layer. Notably, a thin oxide layer primarily composed of (Fe-Cr) formed on the surface due to temperature effects. In addition, with increasing temperature (up to 1000 °C), the oxide of the main alloying elements, specifically Mn2(Fe-Cr)O4, appeared alongside the Fe-Cr oxide. Furthermore, the samples were subjected to conversion X-ray (CXMS) and conversion electron (CEMS) Mössbauer spectroscopy. CXMS revealed a singlet with a decreasing Mössbauer effect based on the surface metal oxide thickness. CEMS revealed the presence of Fe3+ in the surface layer (0.3 µm). Moreover, an interesting phenomenon occurred at higher temperature levels due to the inhomogeneously thick surface metal oxide layer and the tangential direction of the Mössbauer radiation towards the electron detector.
Zobrazit více v PubMed
Lewandowski J.J., Seifi M. Metal additive manufacturing: A review of mechanical properties. Annu. Rev. Mater. Res. 2016;46:151–168. doi: 10.1146/annurev-matsci-070115-032024. DOI
Afkhami S., Dabiri M., Alavi S.H., Björk T., Salminen A. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue. 2019;122:72–83. doi: 10.1016/j.ijfatigue.2018.12.029. DOI
Kurzynowski T., Chlebus E., Kuznicka B., Reiner J. High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. Volume 8239. SPIE; Cergy-Pointoise, France: 2012. Parameters in selective laser melting for processing metallic powders; p. 823914. DOI
Yadroitsev I., Smurov I. Surface Morphology in selective laser melting of metal powders. Phys. Procedia. 2011;12:264–270. doi: 10.1016/j.phpro.2011.03.034. DOI
Murr L.E., Gaytan S.M., Ramirez D.A., Martinez E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B. Metal fabrication by additive manufacturing using laser and electron beam melting technology. J. Mater. Sci. Technol. 2012;28:1–14. doi: 10.1016/S1005-0302(12)60016-4. DOI
Gunasekaran J., Sevvel P., Solomon I.J. Metallic material fabrication by selective laser melting. A review. Mater. Today Proc. 2021;37:252–256. doi: 10.1016/j.matpr.2020.05.162. DOI
Xiao Q., Chen J., Bae Lee H., Jang C., Jang K. Effect of heat treatment on corrosion behavior of additively manufactured 316L stainless steel in higher-temperature water. Corros. Sci. 2023;210:110830. doi: 10.1016/j.corsci.2022.110830. DOI
Murkute P., Pasebani S., Isgor O.B. Production of corrosion-resistant 316L stainless steel clads on carbon steel using powder bed fusion-selective laser melting. J. Mat. Proc. Technol. 2019;273:116243. doi: 10.1016/j.jmatprotec.2019.05.024. DOI
Yu C., Zhao C., Zhang Z., Liu W. Tensile properties of selective laser melted 316L stainless steel. Acta Metall. Sin. 2020;56:683–692. doi: 10.11900/0412.1961.2019.00278. DOI
Chandra-ambhorn S., Saranyachot P., Thublaor T. Higher temperature oxidation behavior of Fe-15.7 wt% Cr-8.5 wt% Mn in oxygen without and with water vapor at 700 °C. Corros. Sci. 2019;148:39–47. doi: 10.1016/j.corsci.2018.11.023. DOI
Ivanova T., Mashlan M., Ingr T., Doláková H., Sarychev D., Sedláčková A. Mössbauer spectroscopy for Additive Manufacturing by Selective Laser Melting. Metals. 2022;12:551. doi: 10.3390/met12040551. DOI
Huang X., Xiao K., Fang X., Xiong Z., Wei L., Zhu P., Li X. Oxidation behavior of 316L austenitic stainless steel in higher temperature air with long-term exposure. Mater. Res. Express. 2020;7:066517. doi: 10.1088/2053-1591/ab96fa. DOI
Piekoszewski J., Sartowska B., Barlak M., Konarski P., Dabrowski L., Starosta W., Walis L., Werner Z., Pochrybniak C., Bochenska K., et al. Improvement of higher temperature oxidation resistance of AISI 316L stainless steel by incorporation of Ce-La elements using intense pulsed plasma beams. Surf. Coat. Technol. 2011;206:854–858. doi: 10.1016/j.surfcoat.2011.03.104. DOI
Hong M., Morales A.L., Chan H.L., Macdonald D., Balooch M., Xie Y., Romanovskaia E., Scully J.R., Kaoumi D., Hosemann P. Effect of thermal oxidation on helium implanted 316L stainless steel. J. App. Phys. 2022;132:185104. doi: 10.1063/5.0122487. DOI
Elger R., Pettersson R. Effect of addition of 4% Al on the high temperature oxidation and nitridation of a 20Cr-25Ni austenitic stainless steel. Oxid. Met. 2014;82:469–490. doi: 10.1007/s11085-014-9503-6. DOI
De Las Heras E., Egidi D.A., Corengia P., Gonzalez-Santamaria D., Garccia-Luis A., Brizuela M., Lopez G.A., Flores Martinez M. Duplex surface treatment of an AISI 316L stainless steel; microstructure and tribological behaviour. Surf. Coat. Technol. 2008;202:2945–2954. doi: 10.1016/j.surfcoat.2007.10.037. DOI
Benafia S., Retraint D., Yapi Brou S., Panicaud B., Grosseau Poussard J.L. Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel. Corros. Sci. 2018;136:188–200. doi: 10.1016/j.corsci.2018.03.007. DOI
Lei Y.B., Wang Z.B., Zhang B., Luo Z.P., Lu J., Lu K. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by preforming a gradient nanostructured surface layer and annealing. Acta Mater. 2021;208:116773. doi: 10.1016/j.actamat.2021.116773. DOI
Terachi T., Yamada T., Miyamoto T., Arioka K., Fukuya K. Corrosion Behavior of Stainless Steel in Simulated PWR Primary Water—Effect of Chromium Content in Alloys and Dissolved Hydrogen. J. Nucl. Sci. Technol. 2008;45:975–984. doi: 10.1080/18811248.2008.9711883. DOI
Ghosh S., Kiran Kumar M., Kain V. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operation. Appl. Surf. Sci. 2013;264:312–319. doi: 10.1016/j.apsusc.2012.10.018. DOI
Yasa E., Kruth J.-P., Deckers J. Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting. CIRP Ann. 2011;60:263–266. doi: 10.1016/j.cirp.2011.03.063. DOI
Marimuthu S., Triantaphyllou A., Antar M., Wimpenny D., Morton H., Beard M. Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 2015;95:97–104. doi: 10.1016/j.ijmachtools.2015.05.002. DOI
Cuesta E., Giganto S., Alvarez B.J., Barreiro J., Martinez-Pellitero S., Meana V. Laser line scanner aptitude for the measurement of Selective Laser Melting parts. Opt. Lasers Eng. 2021;138:106406. doi: 10.1016/j.optlaseng.2020.106406. DOI
Saeidi K., Gao X., Lofaj F., Kvetkova L., Shen Z.J. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidate by laser melting. J. Alloys Compd. 2015;633:463–469. doi: 10.1016/j.jallcom.2015.01.249. DOI
Sedláčková A., Ivanova T., Mashlan M., Doláková H. Phase changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C. Materials. 2022;15:8871. doi: 10.3390/ma15248871. PubMed DOI PMC
Biehler J., Hoche H., Oechsner M. Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite. Surf. Coat. Technol. 2017;324:121–128. doi: 10.1016/j.surfcoat.2017.05.059. DOI
Principi G. The Mössbauer Effect: A Romantic Scientific Page. Metals. 2020;10:992. doi: 10.3390/met10080992. DOI
Linderhof F., Mashlan m., Doláková H., Ingr T., Ivanova T. Surface Micromorphology and Structure of Stainless and Maraging Steel Obtained via Selective Laser Melting: A Mössbauer Spectroscopy Study. Metals. 2021;11:1028. doi: 10.3390/met11071028. DOI
Pechousek J., Mashlan M. Mössbauer spectrometer as a virtual instrument in the PXI/Compact PCI modular system. Czechoslov. J. Phys. 2005;55:853. doi: 10.1007/s10582-005-0087-x. DOI
Kholmetskii A.L., Misevich O.V., Mashlan M., Chudakov V.A., Anashkevich A.F., Gurachevskii V.L. Air scintillation detector for conversion electrons Mössbauer spectroscopy (CEMS) Nucl. Instrum. Methods Phys. Res. B. 1997;129:110. doi: 10.1016/S0168-583X(97)00161-4. DOI
Klencsár Z., Kuzmann E., Vértes A. User-Friendly Program for Multifold Evaluation of Mössbauer Spectra. Hyperfine Interact. 1998;112:269. doi: 10.1023/A:1010866928491. DOI
Klencsár Z., Kuzmann E., Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105. doi: 10.1007/BF02055410. DOI
Nezakat M., Akhiani H., Penttila S., Sabet S.M., Szpunar J. Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corros. Sci. 2015;94:197–206. doi: 10.1016/j.corsci.2015.02.008. DOI
Kain V., Chandra K., Adhe K.N., De P.K. Effect of cold work on low-temperature sensitization behavior of austenitic stainless steels. J. Nucl. Mater. 2004;334:115–132. doi: 10.1016/j.jnucmat.2004.05.008. DOI
Ostwald C., Grabke H.J. Initial oxidation and chromium diffusion Effects of surface working on 9–20% Cr steels. Corros. Sci. 2004;46:1113–1127. doi: 10.1016/j.corsci.2003.09.004. DOI
Tapping R.L., Davidson R.D., McAlpine E., Lister D.H. The composition and morphology of oxide films formed on type 304 stainless steel in lithiated high temperature water. Corros. Sci. 1986;26:563–576. doi: 10.1016/0010-938X(86)90024-7. DOI
Castaing R. Ph.D. Thesis. University of Paris; Paris, France: 1952. Application des Sondes Electronique a une Methode D’analyse Ponctuelle Chimique et Cristallographique.
Riffard F., Buscail H., Rabaste F., Caudron E., Cueff R., Issartel C., Karimi N., Perrier S. Manganese effect on isothermal high temperature oxidation behavior of AISI 304 stainless steel. Mater. Sci. Forum. 2008;595:1127–1134. doi: 10.4028/www.scientific.net/MSF.595-598.1127. DOI
Lothongkum G., Tiyawatwitthaya C., Prawetpai N., Lothongkum A.W. XRD investigation of the Cu and Mn effects on the oxide scale of hot rolled AISI 304L stainless steel after annealing and shot-blasting. Mater. Test. 2020;62:568–572. doi: 10.3139/120.111519. DOI
Lobnig R.E., Schmidt H.P., Hennesen K., Grabke H.J. Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloys. Oxid. Met. 1992;37:81–93. doi: 10.1007/BF00665632. DOI
Wei F.I., Stott F.H. The oxidation performance of Cr2O3-forming commercial iron-nickel alloys at high temperature. High Temp. Technol. 2016;7:59–71. doi: 10.1080/02619180.1989.11753415. DOI
Apell J., Wonneberger R., Seyring M., Stöcker H., Rettenmayr M., Undisz A. Early oxidation stages of a Co-Cr-Fe-Mn-Ni-Si complex concentrated alloy with Cr, Mn, and Si contents matching those of 316L stainless steel. Corros. Sci. 2021;190:109642. doi: 10.1016/j.corsci.2021.109642. DOI
Cook D.C. Strain induced martensite formation in stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1987;18:201–210. doi: 10.1007/BF02825701. DOI
Kanaya K., Okayama S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 1972;5:43–58. doi: 10.1088/0022-3727/5/1/308. DOI
Machala L., Tuček J., Zbořil R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011;23:3255–3272. doi: 10.1021/cm200397g. DOI