Microstructure and Properties of Nanostructured Coating on Ti6Al4V
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32033268
PubMed Central
PMC7040900
DOI
10.3390/ma13030708
PII: ma13030708
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, Ti6Al4V, TiO2 nanotubes, anodization, corrosion, microstructure, oxide coating,
- Publikační typ
- časopisecké články MeSH
Implant surface properties of Ti6Al4V alloy that is currently used as a biocompatible material because of a variety of unique properties can be improved by a self-organized TiO2 layer. The TiO2 nanotubes forming on the titanium-based materials is a relatively recent technology for the surface properties modification and represents pronounced potential in promoting cell adhesion, proliferation, and differentiation that facilitate an implant osseointegration. This work focuses on the influence of surface treatment quality and anodic oxidation parameters on the structure features and properties of TiO2 nanotube coatings. The nanotubes were formed on Ti6Al4V alloy substrates by simultaneous surface oxidation and controlled dissolving of an oxide film in the presence of fluorine ions. The anodization process on ground or polished samples was performed at experimental condition of 30 V for 1 h. The selected anodized samples were heat treated for 2 h at 500 °C under flowing argon. All samples were characterized by scanning electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The corrosion rate in physiological solution reached 0.0043, 0.0182, and 0.0998 mm per year for the samples in polished and not-anodized, as-anodized, and anodized-heat treated conditions, respectively.
Zobrazit více v PubMed
Nasirpouri F.I., Yousefi I., Moslehifard E., Kralil-Allafi J. Tuning surface morphology and crystallinity of anodic TiO2 nanotubes and their response to biomimetic bone growth for implant applications. Surf. Coat. Technol. 2017;315:163–171. doi: 10.1016/j.surfcoat.2017.02.006. DOI
Huang Y., Xu Z., Zhang X., Chang X., Zhang X., Li Y.C., Ye T., Han R., Han S., Gao Y., et al. Nanotube-formed Ti substrates coated with silicate/silver co-doped hydroxyapatite as prospective materials for bone implant. J. Alloys Compd. 2017;697:182–199. doi: 10.1016/j.jallcom.2016.12.139. DOI
Grimes C.A., Mor G.K. TiO2 Nanotubes Arrays: Synthesis, Properties, and Applications. Springer; New York, NY, USA: 2009. p. 358.
Gunputh U.F., Huirong L., Handy R.D., Tredwin C. Anodised TiO2 NT as a scaffold for antibacterial silver nanoparticles on titanium implant. Mater. Sci. Eng. 2018;91:638–644. doi: 10.1016/j.msec.2018.05.074. PubMed DOI
Boothroyd P., Pham X.N. Socioeconomic Renovation in Viet Nam: The Origin, Evolution, and Impact of doi moi. Institute of Southeast Asian Studies; Singapore: 2000. p. 174.
Regonini D., Bowen C.R., Jaroenworaluck A., Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 NT. Mater. Sci. Eng. R. 2013;74:377–406. doi: 10.1016/j.mser.2013.10.001. DOI
Khudhair D., Bhatti A., Li H.Y., Hamedani A., Garmestani H., Hodgson P., Nahavandi S. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater. Sci. Eng. C. 2016;59:1125–1142. doi: 10.1016/j.msec.2015.10.042. PubMed DOI
Hilaeio F., Roche V., Nogueira R.P., Jorge Junior A.M. Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochim. Acta. 2017;245:337–349. doi: 10.1016/j.electacta.2017.05.160. DOI
Mansoorianfar M., Tavoosi M., Mozafarinia R., Ghasemi A., Doostmohammadi A. Preparation and characterization of TiO2 nanotube arrays on Ti6Al4V surface for enhancement of cell treatment. Surf. Coat. Technol. 2017;321:409–415. doi: 10.1016/j.surfcoat.2017.05.016. DOI
Wu G., Wang Y., Liu J., Yao J. Influence of the Ti alloy substrate on the anodic oxidation in an environmentally-friendly electrolyte. Surf. Coat. Technol. 2018;344:680–688. doi: 10.1016/j.surfcoat.2018.04.001. DOI
Petrášová I., Losertová M. Electrochimical behavior of biocompatible alloys. Mater. Technol. 2015;49:207–211.
Brammer K.S., Frandsen C.J., Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–322. doi: 10.1016/j.tibtech.2012.02.005. PubMed DOI
Losertová M., Štamborská M., Lapin J., Mareš V. Comparison of deformation behavior of 316L Stainless Steel and Ti6Al4V alloy applied in traumatology. Metalurgija. 2016;55:667–670.
Elmer J.W., Palmer T.A., Babu S.S., Specht E.D. In situ observations of lattice expansion and transformation rates of α and βphases in Ti–6Al–4V. Mater. Sci. Eng. A. 2005;391:104–113. doi: 10.1016/j.msea.2004.08.084. DOI
Losertová M., Štefek O., Galajda M., Konečná K., Simha Martynková G., Čech Barabaszová K. Microstructure and Electrochemical Behavior of TiO2 Nanotubes Coated on Titanium-based Substrate Before and After Thermal Treatment. J. Nanosci. Nanotechnol. 2019;19:2989–2996. doi: 10.1166/jnn.2019.15859. PubMed DOI
Atapour M., Pilchak A., Frankel G.S., Williams J.C., Fathi M.H., Shamanian M. Corrosion Behavior of Ti-6Al-4V with Different Thermomechanical Treatments and Microstructures. Corrosion. 2010;66:065004-9. doi: 10.5006/1.3452400. DOI
Novoselova T., Malinov S., Sha W., Zhecheva A. High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy. Mater. Sci. Eng. A. 2004;371:103–112. doi: 10.1016/j.msea.2003.12.015. DOI
Verma R., Gangwar J., Srivastava A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017;7:44199–44224. doi: 10.1039/C7RA06925A. DOI
Erdogan N., Bouziani A., Park J., Micusik M., Kim S.Y., Majkova E., Omastova M., Ozturka A. Synthesis and enhanced photocatalytic activity of nitrogen-doped triphasic TiO2 nanoparticles. J. Photoch. Photobio. A. 2019;377:92–100. doi: 10.1016/j.jphotochem.2019.03.047. DOI
Phase Transformation after Heat Treatment of Cr-Ni Stainless Steel Powder for 3D Printing