Study into the Fire and Explosion Characteristics of Polymer Powders Used in Engineering Production Technologies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
020STU-4/2021
Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-21-0187
Slovak Research and Development Agency
PubMed
37959884
PubMed Central
PMC10650339
DOI
10.3390/polym15214203
PII: polym15214203
Knihovny.cz E-resources
- Keywords
- UHMW polyethylene, dust explosion, hazard, polyamide, polypropylene,
- Publication type
- Journal Article MeSH
Polymers and their processing by engineering production technologies (injection, molding or additive manufacturing) are increasingly being used. Polymers used in engineering production technologies are constantly being developed and their properties are being improved. Granulometry, X-ray, FTIR and TGA were used to characterize polymer samples. Determination of the fire parameters of powder samples of polyamide (PA) 12, polypropylene, and ultra-high molecular weight (UHMW) polyethylene is the subject of the current article. An explosive atmosphere can be created by the powder form of these polymer materials, and introduction of preventive safeguards to ensure safety is required for their use. Although the fire parameters of these basic types of polymers are available in databases (e.g., GESTIS-DustEx), our results showed that one of the samples used (polypropylene) was not flammable and thus is safe for use in terms of explosiveness. Two samples were flammable and explosive. The lower explosive limit was 30 g·m-3 (PA12) and 60 g·m-3 (UHMW polyethylene). The maximum explosion pressure of the samples was 6.47 (UHMW polyethylene) and 6.76 bar (PA12). The explosion constant, Kst, of the samples was 116.6 bar·m·s-1 (PA12) and 97.1 bar·m·s-1 (UHMW polyethylene). Therefore, when using polymers in production technologies, it is necessary to know their fire parameters, and to design effective explosion prevention (e.g., ventilation, explosive-proof material, etc.) measures for flammable and explosive polymers.
See more in PubMed
Vlachopoulos J., Strutt D. Polymer processing. Mater. Sci. Technol. 2003;19:1161–1169. doi: 10.1179/026708303225004738. DOI
Manju Kumari Thakur E. Handbook of Sustainable Polymers: Processing and Applications. CRC Press; Boca Raton, FL, USA: 2016.
González-Henríquez C.M., Sarabia-Vallejos M.A., Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019;94:57–116. doi: 10.1016/j.progpolymsci.2019.03.001. DOI
Abbasi T., Abbasi S.A. Dust explosions—Cases, causes, consequences, and control. J. Hazard. Mater. 2007;140:7–44. doi: 10.1016/j.jhazmat.2006.11.007. PubMed DOI
Eckhoff R.K. Dust Explosions in the Process Industries. 3rd ed. Gulf Professional Publishing; Houston, TX, USA: 2003.
Wei M.C., Cheng Y.C., Lin Y.Y., Kuo W.K., Shu C.M. Applications of dust explosion hazard and disaster prevention technology. J. Loss Prev. Process Ind. 2020;68:104304. doi: 10.1016/j.jlp.2020.104304. DOI
Jerdy A.C., Pham T., González-Borja M.Á., Atallah P., Soules D., Abbott R., Lobban L., Crossley S. Impact of the presence of common polymer additives in thermal and catalytic polyethylene decomposition. Appl. Catal. B Environ. 2023;325:122348. doi: 10.1016/j.apcatb.2022.122348. DOI
Babrauskas V., Fuoco R., Blum A. Chapter 3—Flame Retardant Additives in Polymers: When Do the Fire Safety Benefits Outweigh the Toxicity Risks? Papaspyrides, C.D., Kiliaris, P., Eds. Elsevier; Amsterdam, The Netherlands: 2014. pp. 87–118. Polymer Green Flame Retardants. DOI
Ao X., Vázquez-López A., Mocerino D., González C., Wang D.Y. Flame retardancy and fire mechanical properties for natural fiber/polymer composite: A review. Compos. Part B Eng. 2023:111069. doi: 10.1016/j.compositesb.2023.111069. DOI
Vidlička M., Balog K., Dudáček A., Chudová D. Explosion Supression of Combustible Polymer Dust in the Fabric Filter. Int. J. Environ. Sci. 2022;8
Bernard S., Youinou L., Gillard P. MIE determination and thermal degradation study of PA12 polymer powder used for laser sintering. J. Loss Prev. Process Ind. 2013;26:1493–1500. doi: 10.1016/j.jlp.2013.10.001. DOI
Kuracina R., Szabová Z., Škvarka M. Study into parameters of the dust explosion ignited by an improvised explosion device filled with organic peroxide. Process Saf. Environ. Prot. 2021;155:98–107. doi: 10.1016/j.psep.2021.09.011. DOI
Determination of Properties of Combustible Dust during Explosion. Part 1: Determination of the Maximum Pressure Pmax during Combustible Dust Explosion. Slovak Standards Institute; Bratislava, Slovakia: 2011.
British and Institution Standards, Explosive Atmospheres—Part 20—2: Material Characteristics—Combustible Dusts Test Methods. ISO; London, UK: 2016.
Kukfisz B., Dowbysz A., Samsonowicz M., Markowska D., Maranda A. Comparative Analysis of Fire and Explosion Properties of Lycopodium Powder. Energies. 2023;16:6121. doi: 10.3390/en16176121. DOI
Amyotte P. An Introduction to Dust Explosions. Understanding the Myths and Realities of Dust Explosions for a Safer Workplace. Elsevier; Amsterdam, The Netherlands: 2013. 280p.
Technical data sheet Polyamide 12, Reichelt Chemietechnik—Web Page. 2023. [(accessed on 13 June 2023)]. Available online: https://www.rct-online.de/en/RctGlossar/detail/id/10.
Vestosint Polyamide 12 Powders for Demanding Couting Applicatiobs. 2023. [(accessed on 11 June 2023)]. Available online: https://www.vestosint.com/en/download.
Vasquez M., Haworth B., Hopkinson N. Methods for Quantifying the Stable Sintering Region in Laser Sintered Polyamide-12. Polym. Eng. Sci. 2013;53:1131–1356. doi: 10.1002/pen.23386. DOI
Kuracina R., Szabová Z., Buranská E., Pastierová A., Gogola P., Buranský I. Determination of fire parameters of polyamide 12 powder for additive technologies. Polymers. 2021;13:3014. doi: 10.3390/polym13173014. PubMed DOI PMC
Wholers Report 3D Printing and Additive Manufacturing State of the Industry. 2020. [(accessed on 15 August 2023)]. Available online: https://wohlersassociates.com/2020report.htm.
Özbay Kısasöz B., Serhatlı I.E., Bulduk M.E. Selective Laser Sintering Manufacturing and Characterization of Lightweight PA 12 Polymer Composites with Different Hollow Microsphere Additives. J. Mater. Eng. Perform. 2022;31:4049–4059. doi: 10.1007/s11665-021-06481-x. DOI
Plasty a Riešenie Plastoplant SK. 2023. [(accessed on 20 May 2023)]. Available online: https://www.plastoplan.sk/
Polypropylene SE523MO Borealis. 2023. [(accessed on 15 May 2023)]. Available online: https://www.material-safety-sheet.com/companies/borealisgroup.html.
Chen X.S., Yu Z.Z., Liu W., Zhang S. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polym. Degrad. Stab. 2009;94:1520–1525. doi: 10.1016/j.polymdegradstab.2009.04.031. DOI
Yang J., Yu Y., Li Y., Zhang Q., Zheng L., Luo T., Suo Y., Jiang J. Inerting effects of ammonium polyphosphate on explosion characteristics of polypropylene dust. Process Saf. Environ. Prot. 2019;130:221–230. doi: 10.1016/j.psep.2019.08.015. DOI
Pasquini N. Polypropylene handbook. Choice Rev. Online. 2006;43:43–2825. doi: 10.5860/choice.43-2825. DOI
Maddah H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016;6:1–11.
Technical data sheet Ultra-High Molecular Weight Polyethylene—Technical Data Sheet, Celanese—Web Page. 2023. [(accessed on 1 June 2023)]. Available online: https://materials.celanese.com/
Kaya N., Oztarhan A.M., Urkac E.S., Ila D., Budak S., Oks E., Nikolaev A., Exdesir A., Tihminlioglu F., Tek Z., et al. Polymeric thermal analysis of C + H and C + H + Ar ion implanted UHMWPE samples. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007;261:711–714. doi: 10.1016/j.nimb.2007.04.098. DOI
Shtertser A., Zlobin B., Kiselev V., Shemelin S., Ukhina A., Dudina D. Cyclic Impact Compaction of an Ultra High Molecular Weight Polyethylene (UHMWPE) Powder and Properties of the Compacts. Materials. 2022;15:6706. doi: 10.3390/ma15196706. PubMed DOI PMC
Jauffrès D., Lame O., Vigier G., Doré F. Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction. Polymer. 2007;48:6374–6383. doi: 10.1016/j.polymer.2007.07.058. DOI
Tests for Geometrical Properties of Aggregates. CEN; Brussels, Belgium: 2012.
Simha Martynková G., Slíva A., Kratošová G., Čech Barabaszová K., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 materials study of morpho-structural changes during laser sintering of 3d printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC
Salmoria G.V., Paggi R.A., Lago A., Beal V.E. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym. Test. 2011;30:611–615. doi: 10.1016/j.polymertesting.2011.04.007. DOI
Ishikawa T., Nagai S., Kasai N. Effect of Casting Conditions on Polymorphism of Nylon-12. J. Polym. Sci. Part A-2 Polym. Phys. 1980;18:291–299. doi: 10.1002/pol.1980.180180212. DOI
Liu Y., Zhu L., Zhou L., Li Y. Microstructure and mechanical properties of reinforced polyamide 12 composites prepared by laser additive manufacturing. Rapid Prototyp. J. 2019;25:1127–1134. doi: 10.1108/RPJ-08-2018-0220. DOI
Androsch R., Stolp M., Radusch H.J. Simultaneous X-ray diffraction and differential thermal analysis of polymers. Thermochim. Acta. 1996;271:1–8. doi: 10.1016/0040-6031(95)02594-4. DOI
Schmid M., Kleijnen R., Vetterli M., Wegener K. Influence of the origin of polyamide 12 powder on the laser sintering process and laser sintered parts. Appl. Sci. 2017;7:462. doi: 10.3390/app7050462. DOI
Nishino T., Matsumoto T., Nakamae K. Surface structure of isotactic polypropylene by X-ray diffraction. Polym. Eng. Sci. 2000;40:336–343. doi: 10.1002/pen.11167. DOI
Clark E.S. Physical Properties of Materials. 2nd ed. CRC Press; Boca Raton, FL, USA: 2007.
Andrić Ž., Dramićanin M.D., Jokanović V., Dramićanin T., Mitrić M., Viana B. Luminescent properties of nano-SiO2:Eu3+/polypropylene composite. J. Optoelectron. Adv. Mater. 2006;8:829–834.
Wang S., Ajji A., Guo S., Xiong C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers. 2017;9:110. doi: 10.3390/polym9030110. PubMed DOI PMC
Somani R.H., Hsiao B.S., Nogales A., Fruitwala H., Srinivas S., Tsou A.H. Structure development during shear flow induced crystallization of i-PP: In situ wide-angle X-ray diffraction study. Macromolecules. 2001;34:5902–5909. doi: 10.1021/ma0106191. DOI
Machado G., Denardin E.L.G., Kinast E.J., Gonçalves M.C., De Luca M.A., Teixeira S.R., Samios D. Crystalline properties and morphological changes in plastically deformed isotatic polypropylene evaluated by X-ray diffraction and transmission electron microscopy. Eur. Polym. J. 2005;41:129–138. doi: 10.1016/j.eurpolymj.2004.08.011. DOI
Zhu B., Liu J., Wang T., Han M., Valloppilly S., Xu S., Wang X. Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring. ACS Omega. 2017;2:3931–3944. doi: 10.1021/acsomega.7b00563. PubMed DOI PMC
Stojilovic N., Dordevic S.V., Stojadinovic S. Effects of clinical X-ray irradiation on UHMWPE films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017;410:139–143. doi: 10.1016/j.nimb.2017.08.023. DOI
Fejdyś M., Łandwijt M., Kucharska-Jastrzabek A., Struszczyk M.H. The effect of processing conditions on the performance of UHMWPE-fibre reinforced polymer matrix composites. Fibres Text. East. Eur. 2016;24:112–120. doi: 10.5604/12303666.1201140. DOI
Smith B.C. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy. 2021;36:24–29. doi: 10.56530/spectroscopy.xp7081p7. DOI
Fang J., Zhang L., Sutton D., Wang X., Lin T. Needleless melt-electrospinning of polypropylene nanofibers. J. Nanomater. 2012;2012:382639. doi: 10.1155/2012/382639. DOI
Smith B.C. The Infrared Spectra of Polymers III: Hydrocarbon Polymers. Spectroscopy. 2021;36:22–25. doi: 10.56530/spectroscopy.mh7872q7. DOI
Bahrami M., Abenojar J., Martínez M.A. Comparative characterization of hot-pressed polyamide 11 and 12: Mechanical, thermal and durability properties. Polymers. 2021;13:3553. doi: 10.3390/polym13203553. PubMed DOI PMC
Schuman Y., Hang L. Thermal Degradation Study of Nylon 66 using Hyphenation Techniques TGA-MS and TGA-FTIR-GC/MS. J. Therm. Anal. Calorim. 2000;59:385–394.
Smith B.C. Infrared Spectroscopy of Polymers, XI: Introduction to Organic Nitrogen Polymers. Spectroscopy. 2023;38:14–18. doi: 10.56530/spectroscopy.vd3180b5. DOI
Eckhoff R.K. Origin and development of the Godbert-Greenwald furnace for measuring minimum ignition temperatures of dust clouds. Process Saf. Environ. Prot. 2019;129:17–24. doi: 10.1016/j.psep.2019.06.012. DOI
Kuracina R., Szabová Z., Bachratý M., Mynarz M., Škvarka M. A new 365-litre dust explosion chamber: Design and testing. Powder Technol. 2021;386:420–427. doi: 10.1016/j.powtec.2021.03.061. DOI
Kuracina R., Szabová Z., Kosár L., Sahul M. Study into influence of different types of igniters on the explosion parameters of dispersed nitrocellulose powder. J. Loss Prev. Process Ind. 2023;83:105017. doi: 10.1016/j.jlp.2023.105017. DOI
Richter F., Rein G. The Role of Heat Transfer Limitations in Polymer Pyrolysis at the Microscale. Front. Mech. Eng. 2018;4:20. doi: 10.3389/fmech.2018.00018. DOI
Dubdub I., Al-Yaari M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers. 2020;12:891. doi: 10.3390/polym12040891. PubMed DOI PMC
Awad S.A., Khalaf E.M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Compos. Commun. 2019;12:59–63. doi: 10.1016/j.coco.2018.12.008. DOI
Jiang L., Zhou Z., Xiang H., Yang Y., Tian H., Wang J. Characteristics and synergistic effects of co-pyrolysis of microalgae with polypropylene. Fuel. 2022;314:122765. doi: 10.1016/j.fuel.2021.122765. DOI