• This record comes from PubMed

PA-12-Zirconia-Alumina-Cenospheres 3D Printed Composites: Accelerated Ageing and Role of the Sterilisation Process for Physicochemical Properties

. 2022 Aug 02 ; 14 (15) : . [epub] 20220802

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
07/020/RGH20/0062 Rector's of The Silesian University of Technology Habilitation Grant 07/020/RGH20/0062
07/020/BK_22/0073 Grant of Polish Ministry of Science and Higher Education
(CZ.02.1.01/0.0/0.0/16-013/0001791) IT4Innovations national supercomputing centre - path to exascale project
SP2021/106 and 343 SP2021/90 Operational Programme Research, Development and 342 Education, Ministry of Education, Youth and Sport of the Czech Republic

The aim of this study was to conduct artificial ageing tests on polymer-ceramic composites prepared from polyamide PA-12 polymer matrix for medical applications and three different variants of ceramic fillers: zirconia, alumina and cenospheres. Before ageing, the samples were subjected to ethyl oxide sterilization. The composite variants were prepared for 3D printing using the fused deposition modeling method. The control group consisted of unsterilized samples. Samples were subjected to artificial ageing in a high-pressure autoclave. Ageing conditions were calculated from the modified Hammerlich Arrhenius kinetic equation. Ageing was carried out in artificial saliva. After ageing the composites were subjected to mechanical (tensile strength, hardness, surface roughness) testing, chemical and structural (MS, FTIR) analysis, electron microscopy observations (SEM/EDS) and absorbability measurements.

See more in PubMed

Iftikhar S., Jahanzeb N., Saleem M., Rehman S., Matinlinna J.K., Khan A.S. The trends of dental biomaterials research and future directions: A mapping review. Saudi Dent. J. 2021;33:229–238. doi: 10.1016/j.sdentj.2021.01.002. PubMed DOI PMC

Nakonieczny D.S., Antonowicz M., Paszenda Z.K. Cenospheres and their applciations in biomedical engineering—A systematic review. Rev. Adv. Mater. Sci. 2020;59:115–130. doi: 10.1515/rams-2020-0011. DOI

Manam N.S., Harun W.S.W., Shri D.N.A., Ghani S.A.C., Kurniawan T., Ismail M.H., Ibrahim M.H.I. Study of corrosion in biocompatible metlas for implants: A review. J. Alloy. Compd. 2017;701:698–715. doi: 10.1016/j.jallcom.2017.01.196. DOI

Nakonieczny D.S., Ziębowicz A., Paszenda Z.K., Krawczyk C. Trends and perspectives in modification of zirconium oxide for dental prosthetic applications—A review. Biocybern. Biomed. Eng. 2017;37:229–245. doi: 10.1016/j.bbe.2016.10.005. DOI

Li J., Jansen A., Walboomers X.F., Beucken J.J.J.P. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020;103:103574. doi: 10.1016/j.jmbbm.2019.103574. PubMed DOI

Ghodsi S., Tanous M., Hajimahmoudi M., Mahgoli H. Effect of ageing on fracture resistance and torque loss of restorations supported by zirconia and polyetheeetherketone abutments: An in vitro study. J. Prosthet. Dent. 2021;125:501.e1–501.e6. doi: 10.1016/j.prosdent.2020.10.013. PubMed DOI

Souza J.C.M., Correia M.S.T., Noronha Oliviera M., Silva F.S., Henriques B., Oliveira A.P.N., Gomes J.R. PEEK-matrix composites containing different content of natural silica fibers or particulate lithium-zirconium silicate glass fillers: Coefficient of friction and wear volume. Biotri. 2020;24:100147. doi: 10.1016/j.biotri.2020.100147. DOI

Vasques W.F., Sa T.A., Martins F.V., Fonseca E.M. Composite resin CAD-CAM restorations for a midline diastema closure: A clinical report. J. Prosthet. Dent. 2020;127:206–209. doi: 10.1016/j.prosdent.2020.07.022. PubMed DOI

Miura S., Fujisawa M. Current status and perspective of CAD/CAM-produced resin composite crowns: A review of clinical effectiveness. Jpn. Dent. Sci. Rev. 2020;56:184–189. doi: 10.1016/j.jdsr.2020.10.002. PubMed DOI PMC

Schwitalla A.D., Zimmermann T., Spintig T., Emara M.A., Lackamnn J., Muller W.D., Houshmand A. Maximum insertion torque of novel implant-abutment-interface design for PEEK dental implants. J. Mech. Behav. Biomed. Mater. 2018;77:85–89. doi: 10.1016/j.jmbbm.2017.09.005. PubMed DOI

Zimmermann T., Montero A.F., Lieblich M., Ferrari B., Gonzalez-Carrasco J.L., Muller W.D., Schwitalla A.D. In vitro degradation of a biodegradable polyalactic acid/magnesium composite as potential bone augmentation materials in the presence of titanium and PEEK dental implants. Dent. Mater. 2018;34:1492–1500. doi: 10.1016/j.dental.2018.06.009. PubMed DOI

Ma H., Suonan A., Zhou J., Yuan Q., Liu L., Zhao X., Lou X., Yang C., Li D., Zhang Y.G. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab. J. Chem. 2021;14:102977. doi: 10.1016/j.arabjc.2020.102977. DOI

Krishnakumar S., Senthilvelan T. Polymer composites in dentistry and orthopedic applications-a review. Mater. Today Proc. 2021;46:9707–9713. doi: 10.1016/j.matpr.2020.08.463. DOI

Parisi L., Toffoli A., Mozzoni B., Rivara F., Ghezzi B., Cutrera M., Lumetti S., Macaluso G.M. Is selective protein adsorption on biomaterials a viable option to promote periodontal regeneration? Med. Hypo. 2019;132:109388. doi: 10.1016/j.mehy.2019.109388. PubMed DOI

Hukins D.W.L.A., Mahomed A., Kukureka S.N. Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 2008;30:1270–1274. doi: 10.1016/j.medengphy.2008.06.001. PubMed DOI

Hammerlich K.J. General aging therory and simplified protocol for acclerated aging of medical devices. Med. Plast. Biomater. 1998;5:16–23.

Maxwell A., Sims G., Broughton W.R. Review of Accelarated Ageing Methods and Liftime Prediction Techniques for Polymeric Materials. 2005. Npl Report, Depc Mpr 016. [(accessed on 11 May 2022)]. Available online: https://www.semanticscholar.org/paper/Review-of-accelerated-ageing-methods-and-lifetime-Maxwell-Broughton/21f8eab8dae9fc64ada70d5de4d0b43ea2a19fc3.

Standard ISO 13356; Implants for Surgery—Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP). 2015. [(accessed on 11 May 2022)]. Available online: https://www.iso.org/standard/62373.html.

Simha Martynková G., Slíva A., Kratošová G., Cech Barabaszova K., Studentova S., Klusak J., Brozova S., Dokoupil T., Holesova S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC

Alterary S.S., Alyabes R.M., Alshahrani A.A., Monirah A.A.A. Unfunctionalized and Functionalized Multiwalled Carbon Nanotubes/Polyamide Nanocomposites as Selective-Layer Polysulfone Membranes. Polymers. 2022;14:1544. doi: 10.3390/polym14081544. PubMed DOI PMC

Plastics—Determination of Mechanical Properties in Static Tension—Part 1: General Principles. ISO; Geneva, Switzerland: 2012.

Nakonieczny D.S., Kern F., Dufner L., Antonowicz M., Matus K. Alumina and Zirconia reinforced polyamide PA-12 composites for biomedical additive manufacturing. Materials. 2021;14:6201. doi: 10.3390/ma14206201. PubMed DOI PMC

Nakonieczny D.S., Kern F., Dufner L., Dubiel A., Antonowicz M., Matus K. Effect of calcination temperatures on the phase composition, morphology and thermal properties of ZrO2 and Al2O3 for biomedical applications modified with APTES (3-aminopropyltriethoxysilane) Materials. 2021;14:6651. doi: 10.3390/ma14216651. PubMed DOI PMC

ASTM F1980-16; Standard Guide for Accelrated Aging of Sterile Barrier Systems for Medical Devices. [(accessed on 11 May 2022)]. Available online: https://webstore.ansi.org/Standards/ASTM/ASTMF198016?gclid=Cj0KCQjw852XBhC6ARIsAJsFPN3-dL0trM4eUIMm5Iw4JMec5P1U25WjXnlWPSv-rGGCSW5jiig30pEaAhrmEALw_wcB.

Madej-Kiełbik L., Kośla K., Zielińska D., Chmal-Fudali E., Maciejewska M. Effect of Accelerated Ageing on the Mechanical and Structural Properties of the Material System Used in Protectors. Polymers. 2019;11:1263. doi: 10.3390/polym11081263. PubMed DOI PMC

Olivier W.C., Pharr G.M.L. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Mousa A., Heinrich G., Wagenknecht U., Kretzschmar B., Landwehr A.U. The Application of Di-isocyanate Modified Agro-polymer as Filler For XNBR/PA-12 Thermoplastic Elastomer Composites. J. Macromol. Sci. Part A. 2012;49:385–396. doi: 10.1080/10601325.2012.671758. DOI

Salmoria G.V., Paggi R.A., Lago A., Beal V.E. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Poly. Test. 2011;30:611–615. doi: 10.1016/j.polymertesting.2011.04.007. DOI

Kuracina R., Szabová Z., Buranská E., Pastierova A., Gogola E., Buransky I. Determination of Fire Parameters of Polyamide 12 Powder for Additive Technologies. Polymers. 2021;13:3014. doi: 10.3390/polym13173014. PubMed DOI PMC

Majoul N., Aouida S., Bessaïs B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015;381:388–391. doi: 10.1016/j.apsusc.2015.01.107. DOI

Culler S.R., Ishida I., Koenig J.L. Structure of silane coupling agents adsorber on silicon powder. J. Colloid Interface Sci. 1985;106:334–345. doi: 10.1016/S0021-9797(85)80007-2. DOI

Nakonieczny D.S., Antonowicz M., Heim T., Swinarew A.S., Nuckowski P., Matus K., Lemanowicz M. Cenospheres-reinforced PA-12 composite: Preparation, physicochemical properties and soaking tests. Polymers. 2022;14:2332. doi: 10.3390/polym14122332. PubMed DOI PMC

Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Sethy S., Samantaray S.K., Satapathy B.K. Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: Non-isothermal kinetics approach. J. Polym. Eng. 2021;42:87–99. doi: 10.1515/polyeng-2021-0195. DOI

ZRO-T6 IMERYS, MSDS, IMERYS. [(accessed on 11 May 2022)]. Available online: https://www.imerys.com/

Sumitomo, Sumicorundum AA-18, MSDS Sumitomo. [(accessed on 11 May 2022)]. Available online: https://www.sumitomocorp.com/en/jp.

Touris A., Turcios A., Mintz E., Pulugurtha S.R., Thor P., Jolly M., Jalgaonkar U. Effect of molecular weight and hydration on the tensile properties of polyamide 12. Res. Mater. 2020;8:100149. doi: 10.1016/j.rinma.2020.100149. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...