Scleral reactions to different suture materials: A comparative quantitative histological study in a rabbit model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
The Ministry of Education, Youth, and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000787
FIND
The Charles University Cooperatio Program, Research Areas MED/DIAG, and Surgical Disciplines
SVV - 2025 260 773
Charles University
PubMed
40556337
PubMed Central
PMC12204999
DOI
10.1002/ame2.70036
Knihovny.cz E-zdroje
- Klíčová slova
- histology, rabbit, sclera, scleral fixation of intraocular lens, stereology,
- MeSH
- králíci MeSH
- modely u zvířat MeSH
- polypropyleny škodlivé účinky MeSH
- polytetrafluoroethylen škodlivé účinky MeSH
- skléra * patologie MeSH
- sutura * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- polypropyleny MeSH
- polytetrafluoroethylen MeSH
BACKGROUND: Scleral fixation of intraocular lenses is a surgical technique that involves anchoring an artificial lens to the sclera. Traditional approaches, such as capsular bag placement, may not be feasible in certain situations, making scleral fixation a valuable alternative. The scleral reactions to different types of suture materials are not fully understood. Therefore, the present study describes the microscopic structure of normal scleral tissue and its changes with suture materials. METHODS: We compared six groups of rabbit eyes focusing on the sclera: group with polytetrafluoroethylene (PTFE) chain, PTFE fiber, polypropylene (PPE) fiber and control groups. multilevel sampling and stereological methods were used for histological quantification of the leukocyte infiltration fractions and type I and type III collagen. RESULTS: Quantitative histological evaluation revealed the following: (1) For all materials used, inflammation was present in the surrounding scleral tissue compared with healthy controls. However, leukocyte infiltration in the sclera was not statistically different between the materials. (2) As part of the evaluation of collagen, the greatest changes occurred in the PTFE fiber group at 2 weeks postoperatively. In the PTFE chain group, more significant changes were visible at 4 weeks. (3) The changes in the PPE fiber group compared to healthy scleral tissue were the least significant. CONCLUSIONS: From a histological point of view, it is evident that there are differences in the quantitative parameters between the untouched sclera and the sclera with suture material. Furthermore, distinctions were observed among various materials and across different time intervals.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Center of Eye Microsurgery Ofta Pilsen Czech Republic
Department of Pathophysiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Laboratory of Preclinical Studies Biomedical Center Pilsen Czech Republic
Zobrazit více v PubMed
Ganekal S, Venkataratnam S, Dorairaj S, Jhanji V. Comparative evaluation of suture‐assisted and fibrin glue‐assisted scleral fixated intraocular lens implantation. J Refract Surg. 2012;28(4):249‐252. doi: 10.3928/1081597X-20120221-01 PubMed DOI
Patel NA, Shah P, Yannuzzi NA, et al. Clinical outcomes of 4‐point scleral fixated 1‐piece hydrophobic acrylic equiconvex intraocular lens using polytetrafluoroethylene suture. Clin Ophthalmol. 2018;12:2145‐2148. doi: 10.2147/OPTH.S174211 PubMed DOI PMC
Khan MA, Gerstenblith AT, Dollin ML, Gupta OP, Spirn MJ. Scleral fixation of posterior chamber intraocular lenses using gore‐tex suture with concurrent 23‐gauge pars plana vitrectomy. Retina. 2014;34(7):1477‐1480. doi: 10.1097/IAE.0000000000000233 PubMed DOI
Khan MA, Samara WA, Gerstenblith AT, et al. Combined pars plana vitrectomy and scleral fixation of an intraocular lens using gore‐tex suture: one‐year outcomes. Retina. 2018;38(7):1377‐1384. doi: 10.1097/IAE.0000000000001692 PubMed DOI
Zernii EY, Baksheeva VE, Iomdina EN, et al. Rabbit models of ocular diseases: new relevance for classical approaches. CNS Neurol Disord Drug Targets. 2016;15(3):267‐291. doi: 10.2174/1871527315666151110124957 PubMed DOI
Koura Y, Fukushima A, Nishino K, et al. Inflammatory reaction following cataract surgery and implantation of acrylic intraocular lens in rabbits with endotoxin‐induced uveitis. Eye (Lond). 2006;20(5):606‐610. doi: 10.1038/sj.eye.6701975 PubMed DOI
Peiffer RL Jr, Pohm‐Thorsen L, Corcoran K. Models in ophthalmology and vision research. In: Manning PJ, Ringler DH, Newcomer CE, eds. The Biology of the Laboratory Rabbit. 2nd ed. Elsevier; 1994:409‐433. doi: 10.1016/B978-0-12-469235-0.50025-7 DOI
Boubriak OA, Urban JP, Akhtar S, Meek KM, Bron AJ. The effect of hydration and matrix composition on solute diffusion in rabbit sclera. Exp Eye Res. 2000;71(5):503‐514. doi: 10.1006/exer.2000.0909 PubMed DOI
Lee RE, Davison PF. Collagen composition and turnover in ocular tissues of the rabbit. Exp Eye Res. 1981;32(6):737‐745. doi: 10.1016/0014-4835(81)90023-3 PubMed DOI
Shin DH, Ryu WY, Jung JH. The effect of absorbable and non‐absorbable scleral suture on strabismus surgery in the rabbits. Curr Eye Res. 2020;45(10):1252‐1256. doi: 10.1080/02713683.2020.1736308 PubMed DOI
Hanemoto T, Mukai K, Matsushima H, et al. Intrascleral fixation of intraocular lens haptics: histological advantages in a comparison with scleral suture fixation in rabbits. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):465‐472. doi: 10.1007/s00417-019-04243-z PubMed DOI
Sousa Silva R, Pereira Bruxelas C, Costa Andrade G, Correa Maia A. A technique for the management of posttraumatic aniridia and aphakia. GMS Ophthalmol Cases. 2020;10:Doc19. doi: 10.3205/oc000146 PubMed DOI PMC
Guo A, Rife LL, Rao NA, Smith RE. Anterior segment prosthesis development: evaluation of expanded polytetrafluoroethylene as a sclera‐attached prosthetic material. Cornea. 1996;15(2):210‐214. doi: 10.1097/00003226-199603000-00016 PubMed DOI
Kolinko Y, Malečková A, Kochová P, et al. Using virtual microscopy for the development of sampling strategies in quantitative histology and design‐based stereology. Anat Histol Embryol. 2022;51(1):3‐22. doi: 10.1111/ahe.12765 PubMed DOI
Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Elsevier Health Sciences; 2008.
Kocová J. Overall staining of connective tissue and the muscular layer of vessels. Folia Morphol (Praha). 1970;18(3):293‐295. PubMed
Calderón LGR, Kobayashi PE, Vasconcelos RO, Fonseca‐Alves CE, Laufer‐Amorim R. Characterization of collagen fibers (I, III, IV) and elastin of normal and neoplastic canine prostatic tissues. Vet Sci. 2019;6(1):22. doi: 10.3390/vetsci6010022 PubMed DOI PMC
Rich L, Whittaker P. Collagen and Picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. J Morphol Sci. 2005;22:97‐104.
Howard V, Reed M. Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. 1st ed. Garland Science; 2004.
Grajciarová M, Turek D, Malečková A, et al. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: a quantitative histological comparison. Ann Anat. 2022;242:151910. doi: 10.1016/j.aanat.2022.151910 PubMed DOI
Tonar Z, Kochova P, Cimrman R, Perktold J, Witter K. Segmental differences in the orientation of smooth muscle cells in the tunica media of porcine aortae. Biomech Model Mechanobiol. 2015;14(2):315‐332. doi: 10.1007/s10237-014-0605-5 PubMed DOI
Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995;27(7):1022‐1032. doi: 10.1249/00005768-199507000-00011 PubMed DOI
Cotran RS, Kumar V, Robbins SL. Pathologic Basis of Disease. 6th ed. WB Saunders; 1989.
Glasser DB, Bellor J. Necrotizing scleritis of scleral flaps after transscleral suture fixation of an intraocular lens. Am J Ophthalmol. 1992;113(5):529‐532. doi: 10.1016/s0002-9394(14)74724-5 PubMed DOI
Mathew‐Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel). 2021;8(5):63. doi: 10.3390/bioengineering8050063 PubMed DOI PMC
Kuivaniemi H, Tromp G. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene. 2019;707:151‐171. doi: 10.1016/j.gene.2019.05.003 PubMed DOI PMC
Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 2019;228:30‐34. doi: 10.1016/j.lfs.2019.04.042 PubMed DOI
Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen‐based formulations for wound healing: a literature review. Life Sci. 2022;290:120096. doi: 10.1016/j.lfs.2021.120096 PubMed DOI
Wei S, Chow LT, Shum IO, Qin L, Sanderson JE. Left and right ventricular collagen type I/III ratios and remodeling post‐myocardial infarction. J Card Fail. 1999;5(2):117‐126. doi: 10.1016/s1071-9164(99)90034-9 PubMed DOI
Brown SR, Cleveland EM, Deeken CR, Huitron SS, Aluka KJ, Davis KG. Type I/type III collagen ratio associated with diverticulitis of the colon in young patients. J Surg Res. 2017;207:229‐234. doi: 10.1016/j.jss.2016.08.044 PubMed DOI
Milenković S, Jaković N, Stanković B. Selection of suture material for scleral lacerations. Eur J Ophthalmol. 1996;6(3):327‐330. doi: 10.1177/112067219600600318 PubMed DOI
Young RD. The ultrastructural organization of proteoglycans and collagen in human and rabbit scleral matrix. J Cell Sci. 1985;74:95‐104. doi: 10.1242/jcs.74.1.95 PubMed DOI