Selective Laser Sintering of PA 2200 for Hip Implant Applications: Finite Element Analysis, Process Optimization, Morphological and Mechanical Characterization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34361433
PubMed Central
PMC8347637
DOI
10.3390/ma14154240
PII: ma14154240
Knihovny.cz E-zdroje
- Klíčová slova
- acetabular liner, compression, contact pressure, finite element analysis, hip implants, paraxylene immersion, selective laser sintering, surface roughness,
- Publikační typ
- časopisecké články MeSH
Polyamide 12 (PA 22000) is a well-known material and one of the most biocompatible materials tested and used to manufacture customized medical implants by selective laser sintering technology. To optimize the implants, several research activities were considered, starting with the design and manufacture of test samples made of PA 2200 by selective laser sintering (SLS) technology, with different processing parameters and part orientations. The obtained samples were subjected to compression tests and later to SEM analyses of the fractured zones, in which we determined the microstructural properties of the analyzed samples. Finally, an evaluation of the surface roughness of the material and the possibility of improving the surface roughness of the realized parts using finite element analysis to determine the optimum contact pressure between the component made of PA 2200 by SLS and the component made of TiAl6V4 by SLM was performed.
Zobrazit více v PubMed
Kumar R., Kumar M., Chohan J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process. 2021;64:828–850. doi: 10.1016/j.jmapro.2021.02.022. DOI
Syed H.R., Syed H.M., Rizwan A.R.R., Sanjeet C. Selective Laser Sintering in Biomedical Manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing. Elsevier; Amsterdam, The Netherlands: 2021.
Berretta S., Ghita O., Evans K. Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. Eur. Polym. J. 2014;59:218–229. doi: 10.1016/j.eurpolymj.2014.08.004. DOI
Jatender P.S., Pulak M.H. Fitment study of porous polyamide scaffolds fabricated from selective laser sintering. Proceedia Eng. 2013;59:59–71.
Rahim T.N.A.T., Abdullah A.M., Akil H.M., Mohamad D., Rajion Z.A. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym. Lett. 2017;11:963–982. doi: 10.3144/expresspolymlett.2017.92. DOI
Stoia D.I., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials. 2019;12:871. doi: 10.3390/ma12060871. PubMed DOI PMC
Xijin H., Junyan L., Ling W., Zhongmin J., Ruth W., Fisher J. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. J. Biomech. 2014;47:3303–3309. PubMed PMC
Cahill S., Lohfeld S., McHugh P.E. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 2009;20:1255–1262. doi: 10.1007/s10856-009-3693-5. PubMed DOI
Du Y., Liu H., Shuang J., Wang J., Ma J., Zhang S. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf. B Biointerfaces. 2015;135:81–89. doi: 10.1016/j.colsurfb.2015.06.074. PubMed DOI
Nikhil K., Jekaterina K., Ramin R., Miguel A.R., Irina H. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2020;116:111223. PubMed
Latifa A., Kamel C., Skander B., Nacira S., Hassani M., Taher G.T. Structure and mechanical properties of PMMA/GF/Perlon composite for orthopedic prostheses. Mater. Today. 2020;31:S162–S167.
Stieghorst J., Doll T. Rheological behavior of PDMS silicone rubber for 3D printing of medical implants. Addit. Manuf. 2018;24:217–223. doi: 10.1016/j.addma.2018.10.004. DOI
Wegner N., Scholz R., Knyazeva M., Walther F. Service life characterization of orthopedic implant material made of ultra-high molecular weight polyethylene under physiological conditions. J. Mech. Behav. Biomed. Mater. 2020;104:103617. doi: 10.1016/j.jmbbm.2020.103617. PubMed DOI
Krishnakumar S., Senthilvelan T. Polymer composites in dentistry and orthopedic applications—A review. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.08.463. DOI
Moussa A., Rahman S., Xu M., Tanzer M., Pasini D. Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J. Mech. Behav. Biomed. Mater. 2020;105:103705. doi: 10.1016/j.jmbbm.2020.103705. PubMed DOI
Hariharan K., Arumaikkannu G. Structural, mechanical and in vitro studies on pulsed laser deposition of hydroxyapatite on additive manufactured polyamide substrate. Int. J. Bioprint. 2016;2:85–94.
Lee D.S.H., Pai Y., Chang S. Effect of Thermal Treatment of the Hydroxyapatite Powders on the Micropore and Microstructure of Porous Biphasic Calcium Phosphate Composite Granules. J. Biomater. Nanobiotechnol. 2013;4:114–118. doi: 10.4236/jbnb.2013.42015. DOI
Hui D., Goodridge R., Scotchford C., Grant D. Laser sintering of nano-hydroxyapatite coated polyamide 12 powders. Addit. Manuf. 2018;22:560–570. doi: 10.1016/j.addma.2018.05.045. DOI
Shishkovsky I., Morozov Y., Smurov I. Nanostructural self-organization under selective laser sintering of exothermic powder mixtures. Appl. Surf. Sci. 2009;255:5565–5568. doi: 10.1016/j.apsusc.2008.09.090. DOI
Rotella G., Del Prete A., Muzzupappa M., Umbrello D. Innovative Manufacturing Process of Functionalized PA2200 for Reduced Adhesion Properties. J. Manuf. Mater. Process. 2020;4:36. doi: 10.3390/jmmp4020036. DOI
Dabbas F., Stares S.L., Schappo H., Hotza D., Salmoria G.V. Viscoelastic Properties and Creep-Fatigue Behavior of PA2200/HA Composites Manufactured by Selective Laser Sintering. J. Mater. Sci. Eng. B. 2019;9:25–31. doi: 10.17265/2161-6221/2019.1-2.004. DOI
Stichel T., Frick T., Laumer T., Tenner F., Hausotte T., Merklein M., Schmidt M. A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters. J. Mater. Process. Technol. 2018;252:537–545. doi: 10.1016/j.jmatprotec.2017.10.013. DOI
Caulfield B., McHugh P., Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 2007;182:477–488. doi: 10.1016/j.jmatprotec.2006.09.007. DOI
Hamaid M.K., Tolga B.S., Gurkan T., Mustafa E.B., Mert C., Ebubekir K., Yusuf K. Improving the surface quality and mechanical properties of selective laser sintered PA2200 components by the vibratory surface finishing process. Appl. Sci. 2021;3:364.
Narayana B., Venkatesh S. Parametric Optimization for A Quality Prototype From Selective Laser Sintering: Grey Taguchi Method. Mater. Today Proc. 2019;18:4271–4280. doi: 10.1016/j.matpr.2019.07.385. DOI
Beal V., Paggi R.A., Salmoria G.V., Lago A. Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering. J. Appl. Polym. Sci. 2009;113:2910–2919. doi: 10.1002/app.30329. DOI
Leirmo T., Semeniuta O. Investigating the Dimensional and Geometric Accuracy of Laser-Based Powder Bed Fusion of PA2200 (PA12): Experiment Design and Execution. Appl. Sci. 2021;11:2031. doi: 10.3390/app11052031. DOI
Baligidad S.M., Chandrasekhar U., Elangovan K., Shankar S. Taguchi’s Approach: Design optimization of process parameters in selective inhibition sintering. Mater. Today Proc. 2018;5:4778–4786. doi: 10.1016/j.matpr.2017.12.051. DOI
Ali T.K., Esakki B. Study on compressive strength characteristics of selective inhibition sintered UHMWPE specimens based on ANN and RSM approach. CIRP J. Manuf. Sci. Technol. 2020;31:281–293. doi: 10.1016/j.cirpj.2020.05.016. DOI
Li M., Yuchen H., Mengyuan Z., Peng C., Huang G., Yun Z., Huamin Z. Experimental investigating and numerical simulations of the thermal behavior and process optimization for selective laser sintering of PA6. J. Manuf. Process. 2020;56:271–279. doi: 10.1016/j.jmapro.2020.04.080. DOI
Prithvirajan R., Balakumar C., Arumaikkannu G. Effect of strut diameter on compressive behaviour of selective laser sintered polyamide rhombic dodecahedron lattice. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.09.684. DOI
Bibo Y., Zhenhua L., Fei Z. Effect of powder recycling on anisotropic tensile properties of selective laser sintered PA2200 polyamide. Eur. Polym. J. 2020;141:110093.
Phillips T., Fish S., Beaman J. Development of an automated laser control system for improving temperature uniformity and controlling component strength in selective laser sintering. Addit. Manuf. 2018;24:316–322. doi: 10.1016/j.addma.2018.10.016. DOI
Dechet M.A., Baumeister I., Schmidt J. Development of Polyoxymethylene Particles via the Solution-Dissolution Process and Application to the Powder Bed Fusion of Polymers. Materials. 2020;13:1535. doi: 10.3390/ma13071535. PubMed DOI PMC
Stoia D.I., Marsavina L., Linul E. Mode I Fracture Toughness of Polyamide and Alumide Samples obtained by Selective Laser Sintering Additive Process. Polymers. 2020;12:640. doi: 10.3390/polym12030640. PubMed DOI PMC
Lindberg A., Alfthan J., Pettersson H., Flodberg G., Yang L. Mechanical performance of polymer powder bed fused objects—FEM simulation and verification. Addit. Manuf. 2018;24:577–586. doi: 10.1016/j.addma.2018.10.009. DOI
Monzón M., Hernández P.M., Benftez A.N., Marrero M.D., Fernández Á. Predictability of Plastic Parts Behaviour Made from Rapid Manufacturing. Tsinghua Sci. Technol. 2009;14:100–107. doi: 10.1016/S1007-0214(09)70075-6. DOI
Martynková G.M., Slíva A., Kratošová G., Barabaszov K.C., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC
Taylor M., Tanner K., Freeman M., Yettram A. Cancellous bone stresses surrounding the femoral component of a hip prosthesis: An elastic-plastic finite element analysis. Med Eng. Phys. 1995;17:544–550. doi: 10.1016/1350-4533(95)00018-I. PubMed DOI
Lanzl L., Wudy K., Drummer D. The effect of short glass fibers on the process behavior of polyamide 12 during selective laser beam melting. Polym. Test. 2020;83:106313. doi: 10.1016/j.polymertesting.2019.106313. DOI
Amirouche F., Romero F., Gonzalez M., Aram L. Study of Micromotion in Modular Acetabular Components During Gait and Subluxation: A Finite Element Investigation. J. Biomech. Eng. 2008;130:021002. doi: 10.1115/1.2898715. PubMed DOI
Ajoku U., Hopkinson N., Caine M. Experimental measurement and finite element modelling of the compressive properties of laser sintered Nylon-12. Mater. Sci. Eng. A. 2006;428:211–216. doi: 10.1016/j.msea.2006.05.019. DOI
Wudy K., Drummer D. Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties. Addit. Manuf. 2019;25:1–9. doi: 10.1016/j.addma.2018.11.007. DOI
Patel R., Monticone D., Lua M., Grøndahl L., Huang H. Hydrolytic degradation of porous poly(hydroxybutyrate-co-hydroxyvalerate) scaffolds manufactured using selective laser sintering. Polym. Degrad. Stab. 2021;187:109545. doi: 10.1016/j.polymdegradstab.2021.109545. DOI
Fernandes M.G., Alves F.J.L., Fonseca E.M.M. Diaphyseal femoral fracture: 3D biomodel and intramedullary nail created by additive manufacturing. Int. J. Mater. Eng. Innov. 2016;7:130. doi: 10.1504/IJMATEI.2016.079556. DOI
Hughes A., O’Donnchadha B., Tansey A., McMahon C., Hurson C. Acetabular reconstruction using 3D printing in revision hip arthroplasty. Int. J. Surg. 2015;23:S82. doi: 10.1016/j.ijsu.2015.07.370. PubMed DOI PMC
Okolie O., Stachurek I., Kandasubramanian B., Njuguna J. 3D Printing for Hip Implant Applications: A Review. Polymers. 2020;12:2682. doi: 10.3390/polym12112682. PubMed DOI PMC
Zhou F., Xue F., Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty. Saudi J. Biol. Sci. 2020;27:1217–1221. doi: 10.1016/j.sjbs.2020.02.017. PubMed DOI PMC
Mechanical Properties of PA2200 Powder Given by EOS GmbH. [(accessed on 9 May 2021)]. Available online: http://www.3dworknet.com/fileupload/Datasheets/Datasheet_PA2200.pdf.
Calibration Procedure for Compressive Equipment. [(accessed on 4 June 2021)]. Available online: https://www.controls-group.com/usa/upgrades-for-compression-testers/special-calibration-procedures.php.
Passuti N., Philippeau J.M., Gouin F. Friction couples in total hip replacement. Orthop. Traumatol. Surg. Res. 2009;95:27–34. doi: 10.1016/j.otsr.2009.04.003. PubMed DOI
Zienkiewicz O.C., Taylor R.L. The Finite Element Method, The Basis. 7th ed. Wiley; New York, NY, USA: 2014. Appendix A—Isoparametric Finite Element Approximations; pp. 597–603.
Hao Y., Wang L., Jiang W., Wu W., Ai S., Shen L., Zhao S., Dai K. 3D Printing Hip Prostheses Offer Accurate Reconstruction, Stable Fixation, and Functional Recovery for Revision Total Hip Arthroplasty with Complex Acetabular Bone Defect. Engineering. 2020;6:1285–1290. doi: 10.1016/j.eng.2020.04.013. DOI
Goldsmith A., Dowson D., Isaac G.H., Lancaster J.G. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2000;214:39–47. doi: 10.1243/0954411001535228. PubMed DOI
Chou C.-M., Shiao C.-J., Chung C.-J., He J.-L. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications. Thin Solid Film. 2013;549:103–107. doi: 10.1016/j.tsf.2013.09.032. DOI
Bourlidi S., Qureshi J., Soo S., Petridis H. Effect of different initial finishes and Parylene coating thickness on the surface properties of coated PMMA. J. Prosthet. Dent. 2016;115:363–370. doi: 10.1016/j.prosdent.2015.08.019. PubMed DOI
Borzan C.Ş., Berce P., Chezan H., Sabău E., Radu S.A., Ridzon M. Physico-mechanical properties characterization of the parts from pa 2200 manufactured by selective laser sintering technology. Acad. J. Manuf. Eng. 2013;11:108–113.
Borzan C.Ş., Berce P., Leordean V.D., Luca A., Miron A.V., Morovic L. Study of a tridimensional model of a custom implant in cranio-maxillofacial surgery. Acad. J. Manuf. Eng. 2013;11:38–43.
Olejarczyk M., Gruber P., Ziółkowski G. Capabilities and Limitations of Using Desktop 3-D Printers in the Laser Sintering Process. Appl. Sci. 2020;10:6184. doi: 10.3390/app10186184. DOI
Hua X., Li J., Jin Z., Fisher J. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Med. Eng. Phys. 2016;38:518–525. doi: 10.1016/j.medengphy.2016.03.004. PubMed DOI
Hua X., Wang L., Al-Hajjar M., Jin Z., Wilcox R.K., Fisher J. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014;228:682–692. doi: 10.1177/0954411914541830. PubMed DOI
Harris W.H. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties. Clin. Orthop. Relat. Res. 2012;470:3077–3082. doi: 10.1007/s11999-012-2330-7. PubMed DOI PMC