Selective Laser Sintering of PA 2200 for Hip Implant Applications: Finite Element Analysis, Process Optimization, Morphological and Mechanical Characterization

. 2021 Jul 29 ; 14 (15) : . [epub] 20210729

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34361433

Polyamide 12 (PA 22000) is a well-known material and one of the most biocompatible materials tested and used to manufacture customized medical implants by selective laser sintering technology. To optimize the implants, several research activities were considered, starting with the design and manufacture of test samples made of PA 2200 by selective laser sintering (SLS) technology, with different processing parameters and part orientations. The obtained samples were subjected to compression tests and later to SEM analyses of the fractured zones, in which we determined the microstructural properties of the analyzed samples. Finally, an evaluation of the surface roughness of the material and the possibility of improving the surface roughness of the realized parts using finite element analysis to determine the optimum contact pressure between the component made of PA 2200 by SLS and the component made of TiAl6V4 by SLM was performed.

Erratum v

PubMed

Zobrazit více v PubMed

Kumar R., Kumar M., Chohan J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process. 2021;64:828–850. doi: 10.1016/j.jmapro.2021.02.022. DOI

Syed H.R., Syed H.M., Rizwan A.R.R., Sanjeet C. Selective Laser Sintering in Biomedical Manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing. Elsevier; Amsterdam, The Netherlands: 2021.

Berretta S., Ghita O., Evans K. Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. Eur. Polym. J. 2014;59:218–229. doi: 10.1016/j.eurpolymj.2014.08.004. DOI

Jatender P.S., Pulak M.H. Fitment study of porous polyamide scaffolds fabricated from selective laser sintering. Proceedia Eng. 2013;59:59–71.

Rahim T.N.A.T., Abdullah A.M., Akil H.M., Mohamad D., Rajion Z.A. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym. Lett. 2017;11:963–982. doi: 10.3144/expresspolymlett.2017.92. DOI

Stoia D.I., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials. 2019;12:871. doi: 10.3390/ma12060871. PubMed DOI PMC

Xijin H., Junyan L., Ling W., Zhongmin J., Ruth W., Fisher J. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. J. Biomech. 2014;47:3303–3309. PubMed PMC

Cahill S., Lohfeld S., McHugh P.E. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 2009;20:1255–1262. doi: 10.1007/s10856-009-3693-5. PubMed DOI

Du Y., Liu H., Shuang J., Wang J., Ma J., Zhang S. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf. B Biointerfaces. 2015;135:81–89. doi: 10.1016/j.colsurfb.2015.06.074. PubMed DOI

Nikhil K., Jekaterina K., Ramin R., Miguel A.R., Irina H. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2020;116:111223. PubMed

Latifa A., Kamel C., Skander B., Nacira S., Hassani M., Taher G.T. Structure and mechanical properties of PMMA/GF/Perlon composite for orthopedic prostheses. Mater. Today. 2020;31:S162–S167.

Stieghorst J., Doll T. Rheological behavior of PDMS silicone rubber for 3D printing of medical implants. Addit. Manuf. 2018;24:217–223. doi: 10.1016/j.addma.2018.10.004. DOI

Wegner N., Scholz R., Knyazeva M., Walther F. Service life characterization of orthopedic implant material made of ultra-high molecular weight polyethylene under physiological conditions. J. Mech. Behav. Biomed. Mater. 2020;104:103617. doi: 10.1016/j.jmbbm.2020.103617. PubMed DOI

Krishnakumar S., Senthilvelan T. Polymer composites in dentistry and orthopedic applications—A review. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.08.463. DOI

Moussa A., Rahman S., Xu M., Tanzer M., Pasini D. Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J. Mech. Behav. Biomed. Mater. 2020;105:103705. doi: 10.1016/j.jmbbm.2020.103705. PubMed DOI

Hariharan K., Arumaikkannu G. Structural, mechanical and in vitro studies on pulsed laser deposition of hydroxyapatite on additive manufactured polyamide substrate. Int. J. Bioprint. 2016;2:85–94.

Lee D.S.H., Pai Y., Chang S. Effect of Thermal Treatment of the Hydroxyapatite Powders on the Micropore and Microstructure of Porous Biphasic Calcium Phosphate Composite Granules. J. Biomater. Nanobiotechnol. 2013;4:114–118. doi: 10.4236/jbnb.2013.42015. DOI

Hui D., Goodridge R., Scotchford C., Grant D. Laser sintering of nano-hydroxyapatite coated polyamide 12 powders. Addit. Manuf. 2018;22:560–570. doi: 10.1016/j.addma.2018.05.045. DOI

Shishkovsky I., Morozov Y., Smurov I. Nanostructural self-organization under selective laser sintering of exothermic powder mixtures. Appl. Surf. Sci. 2009;255:5565–5568. doi: 10.1016/j.apsusc.2008.09.090. DOI

Rotella G., Del Prete A., Muzzupappa M., Umbrello D. Innovative Manufacturing Process of Functionalized PA2200 for Reduced Adhesion Properties. J. Manuf. Mater. Process. 2020;4:36. doi: 10.3390/jmmp4020036. DOI

Dabbas F., Stares S.L., Schappo H., Hotza D., Salmoria G.V. Viscoelastic Properties and Creep-Fatigue Behavior of PA2200/HA Composites Manufactured by Selective Laser Sintering. J. Mater. Sci. Eng. B. 2019;9:25–31. doi: 10.17265/2161-6221/2019.1-2.004. DOI

Stichel T., Frick T., Laumer T., Tenner F., Hausotte T., Merklein M., Schmidt M. A Round Robin study for selective laser sintering of polymers: Back tracing of the pore morphology to the process parameters. J. Mater. Process. Technol. 2018;252:537–545. doi: 10.1016/j.jmatprotec.2017.10.013. DOI

Caulfield B., McHugh P., Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 2007;182:477–488. doi: 10.1016/j.jmatprotec.2006.09.007. DOI

Hamaid M.K., Tolga B.S., Gurkan T., Mustafa E.B., Mert C., Ebubekir K., Yusuf K. Improving the surface quality and mechanical properties of selective laser sintered PA2200 components by the vibratory surface finishing process. Appl. Sci. 2021;3:364.

Narayana B., Venkatesh S. Parametric Optimization for A Quality Prototype From Selective Laser Sintering: Grey Taguchi Method. Mater. Today Proc. 2019;18:4271–4280. doi: 10.1016/j.matpr.2019.07.385. DOI

Beal V., Paggi R.A., Salmoria G.V., Lago A. Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering. J. Appl. Polym. Sci. 2009;113:2910–2919. doi: 10.1002/app.30329. DOI

Leirmo T., Semeniuta O. Investigating the Dimensional and Geometric Accuracy of Laser-Based Powder Bed Fusion of PA2200 (PA12): Experiment Design and Execution. Appl. Sci. 2021;11:2031. doi: 10.3390/app11052031. DOI

Baligidad S.M., Chandrasekhar U., Elangovan K., Shankar S. Taguchi’s Approach: Design optimization of process parameters in selective inhibition sintering. Mater. Today Proc. 2018;5:4778–4786. doi: 10.1016/j.matpr.2017.12.051. DOI

Ali T.K., Esakki B. Study on compressive strength characteristics of selective inhibition sintered UHMWPE specimens based on ANN and RSM approach. CIRP J. Manuf. Sci. Technol. 2020;31:281–293. doi: 10.1016/j.cirpj.2020.05.016. DOI

Li M., Yuchen H., Mengyuan Z., Peng C., Huang G., Yun Z., Huamin Z. Experimental investigating and numerical simulations of the thermal behavior and process optimization for selective laser sintering of PA6. J. Manuf. Process. 2020;56:271–279. doi: 10.1016/j.jmapro.2020.04.080. DOI

Prithvirajan R., Balakumar C., Arumaikkannu G. Effect of strut diameter on compressive behaviour of selective laser sintered polyamide rhombic dodecahedron lattice. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.09.684. DOI

Bibo Y., Zhenhua L., Fei Z. Effect of powder recycling on anisotropic tensile properties of selective laser sintered PA2200 polyamide. Eur. Polym. J. 2020;141:110093.

Phillips T., Fish S., Beaman J. Development of an automated laser control system for improving temperature uniformity and controlling component strength in selective laser sintering. Addit. Manuf. 2018;24:316–322. doi: 10.1016/j.addma.2018.10.016. DOI

Dechet M.A., Baumeister I., Schmidt J. Development of Polyoxymethylene Particles via the Solution-Dissolution Process and Application to the Powder Bed Fusion of Polymers. Materials. 2020;13:1535. doi: 10.3390/ma13071535. PubMed DOI PMC

Stoia D.I., Marsavina L., Linul E. Mode I Fracture Toughness of Polyamide and Alumide Samples obtained by Selective Laser Sintering Additive Process. Polymers. 2020;12:640. doi: 10.3390/polym12030640. PubMed DOI PMC

Lindberg A., Alfthan J., Pettersson H., Flodberg G., Yang L. Mechanical performance of polymer powder bed fused objects—FEM simulation and verification. Addit. Manuf. 2018;24:577–586. doi: 10.1016/j.addma.2018.10.009. DOI

Monzón M., Hernández P.M., Benftez A.N., Marrero M.D., Fernández Á. Predictability of Plastic Parts Behaviour Made from Rapid Manufacturing. Tsinghua Sci. Technol. 2009;14:100–107. doi: 10.1016/S1007-0214(09)70075-6. DOI

Martynková G.M., Slíva A., Kratošová G., Barabaszov K.C., Študentová S., Klusák J., Brožová S., Dokoupil T., Holešová S. Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing. Polymers. 2021;13:810. doi: 10.3390/polym13050810. PubMed DOI PMC

Taylor M., Tanner K., Freeman M., Yettram A. Cancellous bone stresses surrounding the femoral component of a hip prosthesis: An elastic-plastic finite element analysis. Med Eng. Phys. 1995;17:544–550. doi: 10.1016/1350-4533(95)00018-I. PubMed DOI

Lanzl L., Wudy K., Drummer D. The effect of short glass fibers on the process behavior of polyamide 12 during selective laser beam melting. Polym. Test. 2020;83:106313. doi: 10.1016/j.polymertesting.2019.106313. DOI

Amirouche F., Romero F., Gonzalez M., Aram L. Study of Micromotion in Modular Acetabular Components During Gait and Subluxation: A Finite Element Investigation. J. Biomech. Eng. 2008;130:021002. doi: 10.1115/1.2898715. PubMed DOI

Ajoku U., Hopkinson N., Caine M. Experimental measurement and finite element modelling of the compressive properties of laser sintered Nylon-12. Mater. Sci. Eng. A. 2006;428:211–216. doi: 10.1016/j.msea.2006.05.019. DOI

Wudy K., Drummer D. Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties. Addit. Manuf. 2019;25:1–9. doi: 10.1016/j.addma.2018.11.007. DOI

Patel R., Monticone D., Lua M., Grøndahl L., Huang H. Hydrolytic degradation of porous poly(hydroxybutyrate-co-hydroxyvalerate) scaffolds manufactured using selective laser sintering. Polym. Degrad. Stab. 2021;187:109545. doi: 10.1016/j.polymdegradstab.2021.109545. DOI

Fernandes M.G., Alves F.J.L., Fonseca E.M.M. Diaphyseal femoral fracture: 3D biomodel and intramedullary nail created by additive manufacturing. Int. J. Mater. Eng. Innov. 2016;7:130. doi: 10.1504/IJMATEI.2016.079556. DOI

Hughes A., O’Donnchadha B., Tansey A., McMahon C., Hurson C. Acetabular reconstruction using 3D printing in revision hip arthroplasty. Int. J. Surg. 2015;23:S82. doi: 10.1016/j.ijsu.2015.07.370. PubMed DOI PMC

Okolie O., Stachurek I., Kandasubramanian B., Njuguna J. 3D Printing for Hip Implant Applications: A Review. Polymers. 2020;12:2682. doi: 10.3390/polym12112682. PubMed DOI PMC

Zhou F., Xue F., Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty. Saudi J. Biol. Sci. 2020;27:1217–1221. doi: 10.1016/j.sjbs.2020.02.017. PubMed DOI PMC

Mechanical Properties of PA2200 Powder Given by EOS GmbH. [(accessed on 9 May 2021)]. Available online: http://www.3dworknet.com/fileupload/Datasheets/Datasheet_PA2200.pdf.

Calibration Procedure for Compressive Equipment. [(accessed on 4 June 2021)]. Available online: https://www.controls-group.com/usa/upgrades-for-compression-testers/special-calibration-procedures.php.

Passuti N., Philippeau J.M., Gouin F. Friction couples in total hip replacement. Orthop. Traumatol. Surg. Res. 2009;95:27–34. doi: 10.1016/j.otsr.2009.04.003. PubMed DOI

Zienkiewicz O.C., Taylor R.L. The Finite Element Method, The Basis. 7th ed. Wiley; New York, NY, USA: 2014. Appendix A—Isoparametric Finite Element Approximations; pp. 597–603.

Hao Y., Wang L., Jiang W., Wu W., Ai S., Shen L., Zhao S., Dai K. 3D Printing Hip Prostheses Offer Accurate Reconstruction, Stable Fixation, and Functional Recovery for Revision Total Hip Arthroplasty with Complex Acetabular Bone Defect. Engineering. 2020;6:1285–1290. doi: 10.1016/j.eng.2020.04.013. DOI

Goldsmith A., Dowson D., Isaac G.H., Lancaster J.G. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2000;214:39–47. doi: 10.1243/0954411001535228. PubMed DOI

Chou C.-M., Shiao C.-J., Chung C.-J., He J.-L. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications. Thin Solid Film. 2013;549:103–107. doi: 10.1016/j.tsf.2013.09.032. DOI

Bourlidi S., Qureshi J., Soo S., Petridis H. Effect of different initial finishes and Parylene coating thickness on the surface properties of coated PMMA. J. Prosthet. Dent. 2016;115:363–370. doi: 10.1016/j.prosdent.2015.08.019. PubMed DOI

Borzan C.Ş., Berce P., Chezan H., Sabău E., Radu S.A., Ridzon M. Physico-mechanical properties characterization of the parts from pa 2200 manufactured by selective laser sintering technology. Acad. J. Manuf. Eng. 2013;11:108–113.

Borzan C.Ş., Berce P., Leordean V.D., Luca A., Miron A.V., Morovic L. Study of a tridimensional model of a custom implant in cranio-maxillofacial surgery. Acad. J. Manuf. Eng. 2013;11:38–43.

Olejarczyk M., Gruber P., Ziółkowski G. Capabilities and Limitations of Using Desktop 3-D Printers in the Laser Sintering Process. Appl. Sci. 2020;10:6184. doi: 10.3390/app10186184. DOI

Hua X., Li J., Jin Z., Fisher J. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities. Med. Eng. Phys. 2016;38:518–525. doi: 10.1016/j.medengphy.2016.03.004. PubMed DOI

Hua X., Wang L., Al-Hajjar M., Jin Z., Wilcox R.K., Fisher J. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014;228:682–692. doi: 10.1177/0954411914541830. PubMed DOI

Harris W.H. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties. Clin. Orthop. Relat. Res. 2012;470:3077–3082. doi: 10.1007/s11999-012-2330-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...