Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39125089
PubMed Central
PMC11314168
DOI
10.3390/molecules29153684
PII: molecules29153684
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, mechanistic studies, nerve agents, realkylation, resurrection,
- MeSH
- acetylcholinesterasa * chemie metabolismus MeSH
- cholinesterasové inhibitory * chemie farmakologie MeSH
- indolochinony * chemie MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- termodynamika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- cholinesterasové inhibitory * MeSH
- indolochinony * MeSH
- ligandy MeSH
- quinone methide MeSH Prohlížeč
Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.
Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah 6714414971 Iran
Zobrazit více v PubMed
de OS Giacoppo J., de Lima W.E., Kuca K., da Cunha E.F., França T.C., Ramalho T.D.C. Chemical warfare: Perspectives on reactivating the enzyme acetylcholinesterase inhibited by organophosphates. Mil. Med. Sci. Lett. 2014;83:165–177. doi: 10.31482/mmsl.2014.027. DOI
Sadik O.A., Land W.H., Jr., Wang J. Targeting chemical and biological warfare agents at the molecular level. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003;15:1149–1159. doi: 10.1002/elan.200390140. DOI
Chauhan S., D’cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI
França T.C.C., Silva G.R., De Castro A.T. Chemical Defense: A new subject in the Chemical Teaching. Rev. Virtual De Química. 2010;2:84–104. doi: 10.5935/1984-6835.20100009. DOI
Gravett M.R., Hopkins F.B., Self A.J., Webb A.J., Timperley C.M., Baker M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014;470:20140076. doi: 10.1098/rspa.2014.0076. PubMed DOI PMC
El-Ebiary A.A., Elsharkawy R.E., Soliman N.A., Soliman M.A., Hashem A.A. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016;119:222–227. doi: 10.1111/bcpt.12554. PubMed DOI
Gautam V.K., Kamath S.D. Study of Organophosphorus Compound Poisoning in a Tertiary Care Hospital and the Role of Peradeniya Organophosphorus Poisoning Scale as a Prognostic Marker of the Outcome. J. Assoc. Physicians India. 2022;70:11–12. doi: 10.4103/jfmpc.jfmpc_518_21. PubMed DOI
Terekhov S.S., Palikov V.A., Palikova Y.A., Dyachenko I.A., Shamborant O.G., Smirnov I.V., Masson P., Gabibov A.G. Application of Tetrameric Recombinant Human Butyrylcholinesterase as a Biopharmaceutical for Amelioration of Symptoms of Acute Organophosphate Poisoning. Bull. Exp. Biol. Med. 2017;163:430–435. doi: 10.1007/s10517-017-3821-z. PubMed DOI
Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. Blackwell Publ. Ltd. 2017;142:26–40. doi: 10.1111/jnc.14026. PubMed DOI
Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F., Franca T.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem -Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI
Li C., Srivastava R.K., Athar M. Biological and environmental hazards associated with exposure to chemical warfare agents: Arsenicals. Ann. N. Y. Acad. Sci. 2016;1378:143–157. doi: 10.1111/nyas.13214. PubMed DOI PMC
Silva G.R., Borges I., Jr., Figueroa-Villar J.D., Castro A.T.D. Defesa química: Histórico, classificação dos agentes de guerra E ação dos neurotóxicos. Química Nova. 2012;35:2083–2091. doi: 10.1590/S0100-40422012001000033. DOI
Wilson C., Main M.J., Cooper N.J., Briggs M.E., Cooper A.I., Adams D.J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017;8:1914–1922. doi: 10.1039/C7PY00040E. DOI
Black R.M., Read R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013;87:421–437. doi: 10.1007/s00204-012-1005-1. PubMed DOI
José Filho B.G., Bruziquesi C.G., Rios R.D., Castro A.A., Victória H.F., Krambrock K., Mansur A.A., Mansur H.S., Siniterra R.D., Ramalho T.C., et al. Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric. Appl. Catal. B Environ. 2021;285:119774. doi: 10.1016/j.apcatb.2020.119774. DOI
Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI
An Y., Zhu Y., Yao Y., Liu J. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. Phys. Chem. Chem. Phys. 2016;18:9838–9846. doi: 10.1039/C5CP07991H. PubMed DOI
Carletti E., Li H., Li B., Ekstrom F., Nicolet Y., Loiodice M., Gillon E., Froment M.T., Lockridge O., Schopfer L.M., et al. Aging of Cholinesterases Phosphylated by Tabun Proceeds through O-Dealkylation. J. Am. Chem. Soc. 2008;130:16011–16020. doi: 10.1021/ja804941z. PubMed DOI
Carletti E., Colletier J.P., Dupeux F., Trovaslet M., Masson P., Nachon F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J. Med. Chem. 2010;53:4002–4008. doi: 10.1021/jm901853b. PubMed DOI
Franjesevic A.J., Sillart S.B., Beck J.M., Vyas S., Callam C.S., Hadad C.M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chem.-A Eur. J. 2019;25:5337–5371. doi: 10.1002/chem.201805075. PubMed DOI PMC
Yoder R.J., Zhuang Q., Beck J.M., Franjesevic A., Blanton T.G., Sillart S., Secor T., Guerra L., Brown J.D., Reid C., et al. Study of para-Quinone Methide Precursors toward the Realkylation of Aged Acetylcholinesterase. Acs Med. Chem. Lett. 2017;8:622–627. doi: 10.1021/acsmedchemlett.7b00037. PubMed DOI PMC
Zhuang Q., Young A., Callam C.S., McElroy C.A., Ekici Ö.D., Yoder R.J., Hadad C.M. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase. Ann. N. Y. Acad. Sci. Blackwell Publ. Inc. 2016;1374:94–104. doi: 10.1111/nyas.13124. PubMed DOI PMC
Zhuang Q.G., Franjesevic A.J., Corrigan T.S., Coldren W.H., Dicken R., Sillart S., DeYong A., Yoshino N., Smith J., Fabry S., et al. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J. Med. Chem. 2018;61:7034–7042. doi: 10.1021/acs.jmedchem.7b01620. PubMed DOI
McHardy S.F., Wang H.Y.L., McCowen S.V., Valdez M.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators: An update on the patent literature (2012–2015) Expert Opin. Ther. Pat. 2017;27:455–476. doi: 10.1080/13543776.2017.1272571. PubMed DOI
Biovia D.S. Discovery Studio Modeling Environment. Dassault Syst. Release SanDiego 4 2023. [(accessed on 22 June 2023)]. Available online: https://3ds.com/products-services/biovia/products.
Thomsen R., Christensen M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Li Y.P., Han G.Y. Retracted Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor (Retracted article. See vol. 138, pg. 7422, 2013) Analyst. 2012;137:3160–3165. doi: 10.1039/c2an35065c. PubMed DOI
da Cunha E.F., Ramalho T.C., Reynolds R.C. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases. J. Biomol. Struct. Dyn. 2008;25:377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI
Banerjee P., Ulker O.C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods. 2022;32:542–548. doi: 10.1080/15376516.2022.2053623. PubMed DOI
Arulanandam C.D., Hwang J.S., Rathinam A.J., Dahms H.U. Evaluating different web applications to assess the toxicity of plasticizers. Sci. Rep. 2022;12:19684. doi: 10.1038/s41598-022-18327-0. PubMed DOI PMC
Luo L., Zhong A., Wang Q., Zheng T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs. 2021;20:29. doi: 10.3390/md20010029. PubMed DOI PMC
Fowler S., Brink A., Cleary Y., Günther A., Heinig K., Husser C., Kletzl H., Kratochwil N., Mueller L., Savage M., et al. Addressing Today’s Absorption, Distribution, Metabolism, and Excretion (ADME) Challenges in the Translation of In Vitro ADME Characteristics to Humans: A Case Study of the SMN2 RNA Splicing Modifier Risdiplam. Drug Metab. Dispos. 2022;50:65. doi: 10.1124/dmd.121.000563. PubMed DOI
Sargsyan K., Grauffel C., Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017;13:1518–1524. doi: 10.1021/acs.jctc.7b00028. PubMed DOI
Zubair M.S., Maulana S., Widodo A., Mukaddas A., Pitopang R. Docking Study on Anti-HIV-1 Activity of Secondary Metabolites from Zingiberaceae Plants. J. Pharm. BioAllied Sci. 2020;12:763–767. doi: 10.4103/jpbs.JPBS_261_19. PubMed DOI PMC
Vankayala S.L., Warrensford L.C., Pittman A.R., Pollard B.C., Kearns F.L., Larkin J.D., Woodcock H.L. CIFDock: A novel CHARMM-based flexible receptor-flexible ligand docking protocol. J. Comput. Chem. 2022;43:84–95. doi: 10.1002/jcc.26759. PubMed DOI
Ferrari I.V., Patrizio P. Development and Validation Molecular Docking Analysis of Human serum albumin (HSA) [(accessed on 26 August 2023)];BioRxiv. 2021 BioRxiv:2021.07.09.451789. Available online: http://biorxiv.org/content/early/2021/07/10/2021.07.09.451789.abstract.
Bhardwaj P., Biswas G.P., Bhunia B. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan. Chemosphere. 2019;235:976–984. doi: 10.1016/j.chemosphere.2019.07.027. PubMed DOI
Quinn D.M., Topczewski J., Yasapala N., Lodge A. Why is aged acetylcholinesterase so difficult to reactivate? Molecules. 2017;22:1464. doi: 10.3390/molecules22091464. PubMed DOI PMC
de Castro A.A., Assis L.C., Soares F.V., Kuca K., Polisel D.A., da Cunha E.F., Ramalho T.C. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016–2019) Biomolecules. 2020;10:436. doi: 10.3390/biom10030436. PubMed DOI PMC
EA de Lima W., F Pereira A., A de Castro A., FF da Cunha E., C Ramalho T. Flexibility in the Molecular Design of Acetylcholinesterase Reactivators: Probing Representative Conformations by Chemometric Techniques and Docking/QM Calculations. Lett. Drug Des. Discov. 2016;13:360–371. doi: 10.2174/1570180812666150918191550. DOI
Truhlar D.G., Garrett B.C., Klippenstein S.J. Current Status of Transition-State Theory. J. Phys. Chem. 1996;100:12771–12800. doi: 10.1021/jp953748q. DOI
Banerjee P., Eckert A.O., Schrey A.K., Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research. Nucleic Acids Res. 2018;46:W257–W263. doi: 10.1093/nar/gky318. PubMed DOI PMC
Bakchi B., Krishna A.D., Sreecharan E., Ganesh V.B.J., Niharika M., Maharshi S., Puttagunta S.B., Sigalapalli D.K., Bhandare R.R., Shaik A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022;1259:132712. doi: 10.1016/j.molstruc.2022.132712. DOI
Bragina M.E., Daina A., Perez M.A., Michielin O., Zoete V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022;23:811. doi: 10.3390/ijms23020811. PubMed DOI PMC
Protti Í.F., Rodrigues D.R., Fonseca S.K., Alves R.J., de Oliveira R.B., Maltarollo V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021;16:1446–1456. doi: 10.1002/cmdc.202000805. PubMed DOI