Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors

. 2024 Aug 03 ; 29 (15) : . [epub] 20240803

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39125089

Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.

Zobrazit více v PubMed

de OS Giacoppo J., de Lima W.E., Kuca K., da Cunha E.F., França T.C., Ramalho T.D.C. Chemical warfare: Perspectives on reactivating the enzyme acetylcholinesterase inhibited by organophosphates. Mil. Med. Sci. Lett. 2014;83:165–177. doi: 10.31482/mmsl.2014.027. DOI

Sadik O.A., Land W.H., Jr., Wang J. Targeting chemical and biological warfare agents at the molecular level. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003;15:1149–1159. doi: 10.1002/elan.200390140. DOI

Chauhan S., D’cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI

França T.C.C., Silva G.R., De Castro A.T. Chemical Defense: A new subject in the Chemical Teaching. Rev. Virtual De Química. 2010;2:84–104. doi: 10.5935/1984-6835.20100009. DOI

Gravett M.R., Hopkins F.B., Self A.J., Webb A.J., Timperley C.M., Baker M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014;470:20140076. doi: 10.1098/rspa.2014.0076. PubMed DOI PMC

El-Ebiary A.A., Elsharkawy R.E., Soliman N.A., Soliman M.A., Hashem A.A. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016;119:222–227. doi: 10.1111/bcpt.12554. PubMed DOI

Gautam V.K., Kamath S.D. Study of Organophosphorus Compound Poisoning in a Tertiary Care Hospital and the Role of Peradeniya Organophosphorus Poisoning Scale as a Prognostic Marker of the Outcome. J. Assoc. Physicians India. 2022;70:11–12. doi: 10.4103/jfmpc.jfmpc_518_21. PubMed DOI

Terekhov S.S., Palikov V.A., Palikova Y.A., Dyachenko I.A., Shamborant O.G., Smirnov I.V., Masson P., Gabibov A.G. Application of Tetrameric Recombinant Human Butyrylcholinesterase as a Biopharmaceutical for Amelioration of Symptoms of Acute Organophosphate Poisoning. Bull. Exp. Biol. Med. 2017;163:430–435. doi: 10.1007/s10517-017-3821-z. PubMed DOI

Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. Blackwell Publ. Ltd. 2017;142:26–40. doi: 10.1111/jnc.14026. PubMed DOI

Polisel D.A., de Castro A.A., Mancini D.T., da Cunha E.F., Franca T.C., Ramalho T.C., Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem -Biol. Interact. 2019;309:108671. doi: 10.1016/j.cbi.2019.05.037. PubMed DOI

Li C., Srivastava R.K., Athar M. Biological and environmental hazards associated with exposure to chemical warfare agents: Arsenicals. Ann. N. Y. Acad. Sci. 2016;1378:143–157. doi: 10.1111/nyas.13214. PubMed DOI PMC

Silva G.R., Borges I., Jr., Figueroa-Villar J.D., Castro A.T.D. Defesa química: Histórico, classificação dos agentes de guerra E ação dos neurotóxicos. Química Nova. 2012;35:2083–2091. doi: 10.1590/S0100-40422012001000033. DOI

Wilson C., Main M.J., Cooper N.J., Briggs M.E., Cooper A.I., Adams D.J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017;8:1914–1922. doi: 10.1039/C7PY00040E. DOI

Black R.M., Read R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013;87:421–437. doi: 10.1007/s00204-012-1005-1. PubMed DOI

José Filho B.G., Bruziquesi C.G., Rios R.D., Castro A.A., Victória H.F., Krambrock K., Mansur A.A., Mansur H.S., Siniterra R.D., Ramalho T.C., et al. Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric. Appl. Catal. B Environ. 2021;285:119774. doi: 10.1016/j.apcatb.2020.119774. DOI

Kassa J., Korabecny J., Nepovimova E., Jun D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018;16:10–14. doi: 10.1016/j.jab.2017.01.004. DOI

An Y., Zhu Y., Yao Y., Liu J. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. Phys. Chem. Chem. Phys. 2016;18:9838–9846. doi: 10.1039/C5CP07991H. PubMed DOI

Carletti E., Li H., Li B., Ekstrom F., Nicolet Y., Loiodice M., Gillon E., Froment M.T., Lockridge O., Schopfer L.M., et al. Aging of Cholinesterases Phosphylated by Tabun Proceeds through O-Dealkylation. J. Am. Chem. Soc. 2008;130:16011–16020. doi: 10.1021/ja804941z. PubMed DOI

Carletti E., Colletier J.P., Dupeux F., Trovaslet M., Masson P., Nachon F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J. Med. Chem. 2010;53:4002–4008. doi: 10.1021/jm901853b. PubMed DOI

Franjesevic A.J., Sillart S.B., Beck J.M., Vyas S., Callam C.S., Hadad C.M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chem.-A Eur. J. 2019;25:5337–5371. doi: 10.1002/chem.201805075. PubMed DOI PMC

Yoder R.J., Zhuang Q., Beck J.M., Franjesevic A., Blanton T.G., Sillart S., Secor T., Guerra L., Brown J.D., Reid C., et al. Study of para-Quinone Methide Precursors toward the Realkylation of Aged Acetylcholinesterase. Acs Med. Chem. Lett. 2017;8:622–627. doi: 10.1021/acsmedchemlett.7b00037. PubMed DOI PMC

Zhuang Q., Young A., Callam C.S., McElroy C.A., Ekici Ö.D., Yoder R.J., Hadad C.M. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase. Ann. N. Y. Acad. Sci. Blackwell Publ. Inc. 2016;1374:94–104. doi: 10.1111/nyas.13124. PubMed DOI PMC

Zhuang Q.G., Franjesevic A.J., Corrigan T.S., Coldren W.H., Dicken R., Sillart S., DeYong A., Yoshino N., Smith J., Fabry S., et al. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J. Med. Chem. 2018;61:7034–7042. doi: 10.1021/acs.jmedchem.7b01620. PubMed DOI

McHardy S.F., Wang H.Y.L., McCowen S.V., Valdez M.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators: An update on the patent literature (2012–2015) Expert Opin. Ther. Pat. 2017;27:455–476. doi: 10.1080/13543776.2017.1272571. PubMed DOI

Biovia D.S. Discovery Studio Modeling Environment. Dassault Syst. Release SanDiego 4 2023. [(accessed on 22 June 2023)]. Available online: https://3ds.com/products-services/biovia/products.

Thomsen R., Christensen M.H. MolDock:  A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Li Y.P., Han G.Y. Retracted Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor (Retracted article. See vol. 138, pg. 7422, 2013) Analyst. 2012;137:3160–3165. doi: 10.1039/c2an35065c. PubMed DOI

da Cunha E.F., Ramalho T.C., Reynolds R.C. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases. J. Biomol. Struct. Dyn. 2008;25:377–385. doi: 10.1080/07391102.2008.10507186. PubMed DOI

Banerjee P., Ulker O.C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods. 2022;32:542–548. doi: 10.1080/15376516.2022.2053623. PubMed DOI

Arulanandam C.D., Hwang J.S., Rathinam A.J., Dahms H.U. Evaluating different web applications to assess the toxicity of plasticizers. Sci. Rep. 2022;12:19684. doi: 10.1038/s41598-022-18327-0. PubMed DOI PMC

Luo L., Zhong A., Wang Q., Zheng T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs. 2021;20:29. doi: 10.3390/md20010029. PubMed DOI PMC

Fowler S., Brink A., Cleary Y., Günther A., Heinig K., Husser C., Kletzl H., Kratochwil N., Mueller L., Savage M., et al. Addressing Today’s Absorption, Distribution, Metabolism, and Excretion (ADME) Challenges in the Translation of In Vitro ADME Characteristics to Humans: A Case Study of the SMN2 RNA Splicing Modifier Risdiplam. Drug Metab. Dispos. 2022;50:65. doi: 10.1124/dmd.121.000563. PubMed DOI

Sargsyan K., Grauffel C., Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017;13:1518–1524. doi: 10.1021/acs.jctc.7b00028. PubMed DOI

Zubair M.S., Maulana S., Widodo A., Mukaddas A., Pitopang R. Docking Study on Anti-HIV-1 Activity of Secondary Metabolites from Zingiberaceae Plants. J. Pharm. BioAllied Sci. 2020;12:763–767. doi: 10.4103/jpbs.JPBS_261_19. PubMed DOI PMC

Vankayala S.L., Warrensford L.C., Pittman A.R., Pollard B.C., Kearns F.L., Larkin J.D., Woodcock H.L. CIFDock: A novel CHARMM-based flexible receptor-flexible ligand docking protocol. J. Comput. Chem. 2022;43:84–95. doi: 10.1002/jcc.26759. PubMed DOI

Ferrari I.V., Patrizio P. Development and Validation Molecular Docking Analysis of Human serum albumin (HSA) [(accessed on 26 August 2023)];BioRxiv. 2021 BioRxiv:2021.07.09.451789. Available online: http://biorxiv.org/content/early/2021/07/10/2021.07.09.451789.abstract.

Bhardwaj P., Biswas G.P., Bhunia B. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan. Chemosphere. 2019;235:976–984. doi: 10.1016/j.chemosphere.2019.07.027. PubMed DOI

Quinn D.M., Topczewski J., Yasapala N., Lodge A. Why is aged acetylcholinesterase so difficult to reactivate? Molecules. 2017;22:1464. doi: 10.3390/molecules22091464. PubMed DOI PMC

de Castro A.A., Assis L.C., Soares F.V., Kuca K., Polisel D.A., da Cunha E.F., Ramalho T.C. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016–2019) Biomolecules. 2020;10:436. doi: 10.3390/biom10030436. PubMed DOI PMC

EA de Lima W., F Pereira A., A de Castro A., FF da Cunha E., C Ramalho T. Flexibility in the Molecular Design of Acetylcholinesterase Reactivators: Probing Representative Conformations by Chemometric Techniques and Docking/QM Calculations. Lett. Drug Des. Discov. 2016;13:360–371. doi: 10.2174/1570180812666150918191550. DOI

Truhlar D.G., Garrett B.C., Klippenstein S.J. Current Status of Transition-State Theory. J. Phys. Chem. 1996;100:12771–12800. doi: 10.1021/jp953748q. DOI

Banerjee P., Eckert A.O., Schrey A.K., Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research. Nucleic Acids Res. 2018;46:W257–W263. doi: 10.1093/nar/gky318. PubMed DOI PMC

Bakchi B., Krishna A.D., Sreecharan E., Ganesh V.B.J., Niharika M., Maharshi S., Puttagunta S.B., Sigalapalli D.K., Bhandare R.R., Shaik A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022;1259:132712. doi: 10.1016/j.molstruc.2022.132712. DOI

Bragina M.E., Daina A., Perez M.A., Michielin O., Zoete V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022;23:811. doi: 10.3390/ijms23020811. PubMed DOI PMC

Protti Í.F., Rodrigues D.R., Fonseca S.K., Alves R.J., de Oliveira R.B., Maltarollo V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021;16:1446–1456. doi: 10.1002/cmdc.202000805. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...