Quality of Surface Texture and Mechanical Properties of PLA and PA-Based Material Reinforced with Carbon Fibers Manufactured by FDM and CFF 3D Printing Technologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
European Regional Development Fund
PubMed
34063764
PubMed Central
PMC8196680
DOI
10.3390/polym13111671
PII: polym13111671
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, CFF, FDM, carbon fibers, mechanical properties, polymers,
- Publikační typ
- časopisecké články MeSH
The paper presents the results of mechanical tests of models manufactured with two 3D printing technologies, FDM and CFF. Both technologies use PLA or PA-based materials reinforced with carbon fibers. The work includes both uniaxial tensile tests of the tested materials and metrological measurements of surfaces produced with two 3D printing technologies. The test results showed a significant influence of the type of technology on the strength of the models built and on the quality of the technological surface layer. After the analysis of the parameters of the primary profile, roughness and waviness, it can be clearly stated that the quality of the technological surface layer is much better for the models made with the CFF technology compared to the FDM technology. Furthermore, the tensile strength of the models manufactured of carbon fiber-enriched material is much higher for samples made with CFF technology compared to FDM.
Zobrazit více v PubMed
Grimmelsmann N., Martens Y., Schäl P., Meissner H., Ehrmann A. Mechanical and Electrical Contacting of Electronic Components on Textiles by 3D Printing. Procedia Technol. 2016;26:66–71. doi: 10.1016/j.protcy.2016.08.010. DOI
Richter C., Schmülling S., Ehrmann A., Finsterbusch K. Design, Manufacturing and Mechatronics, Proceedings of the 2015 Annual International Conference on Design, Manufacturing and Mechatronics (ICDMM2015), Wuhan, China, 17–18 April 2015. World Scientific; Singapore: 2015. FDM Printing of 3D Forms with Embedded Fibrous Materials; pp. 961–969.
Fafenrot S., Grimmelsmann N., Wortmann M., Ehrmann A. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling. Materials. 2017;10:1199. doi: 10.3390/ma10101199. PubMed DOI PMC
Zmarzły P., Gogolewski D., Kozior T. Design guidelines for plastic casting using 3D printing. J. Eng. Fibers Fabr. 2020;15 doi: 10.1177/1558925020916037. DOI
Blachowicz T., Ehrmann A. 3D Printed MEMS Technology—Recent Developments and Applications. Micromachines. 2020;11:434. doi: 10.3390/mi11040434. PubMed DOI PMC
Kozior T., Mamun A., Trabelsi M., Sabantina L., Ehrmann A. Quality of the surface texture and mechanical properties of FDM printed samples after thermal and chemical treatment. J. Mech. Eng. 2020;66:105–113.
Dezaki M.L., Ariffin M.K.A.M., Ismail M.I.S. Effects of CNC Machining on Surface Roughness in Fused Deposition Modelling (FDM) Products. Materials. 2020;13:2608. doi: 10.3390/ma13112608. PubMed DOI PMC
Nowakowski L., Miko E., Skrzyniarz M. Designation of the Minimum Thickness of Machined Layer for the Milling Process of Duralumin PA6; Proceedings of the 23rd International Conference of Engineering Mechanics; Svratka, Czech Republic. 15–18 May 2017.
Kousiatza C., Tzetzis D., Karalekas D. In-situ characterization of 3D printed continuous fiber reinforced composites: A methodological study using fiber Bragg grating sensors. Compos. Sci. Technol. 2019;174:134–141. doi: 10.1016/j.compscitech.2019.02.008. DOI
Bochnia J., Blasiak M., Kozior T. Tensile Strength Analysis of Thin-Walled Polymer Glass Fiber Reinforced Samples Manufactured by 3D Printing Technology. Polymers. 2020;12:2783. doi: 10.3390/polym12122783. PubMed DOI PMC
Kozior T. The Influence of Selected Selective Laser Sintering Technology Process Parameters on Stress Relaxation, Mass of Models, and Their Surface Texture Quality. 3D Print. Addit. Manuf. 2020;7:126–138. doi: 10.1089/3dp.2019.0036. PubMed DOI PMC
Adamczak S., Zmarzly P., Kozior T., Gogolewski D. Assessment of Roundness and Waviness Deviations of Elements Produced by Selective Laser Sintering Technology; Proceedings of the 23rd International Conference of Engineering Mechanics; Svratka, Czech Republic. 15–18 May 2017.
Kozior T. Rheological Properties of Polyamide PA 2200 in SLS Technology. Tech. Gaz. 2020;27:1092–1100. doi: 10.17559/tv-20190225122204. DOI
Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC
Kozior T., Kundera C. Surface texture of models manufactured by FDM technology. AIP Conf. Proc. 2018;2017:020011. doi: 10.1063/1.5056274. DOI
Valvez S., Santos P., Parente J., Silva M., Reis P. 3D printed continuous carbon fiber reinforced PLA composites: A short review. Procedia Struct. Integr. 2020;25:394–399. doi: 10.1016/j.prostr.2020.04.056. DOI
Chaudhry F.N., Butt S.I., Mubashar A., Bin Naveed A., Imran S.H., Faping Z. Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM. J. Thermoplast. Compos. Mater. 2019 doi: 10.1177/0892705719886891. DOI
Peng Y., Wu Y., Wang K., Gao G., Ahzi S. Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos. Struct. 2019;207:232–239. doi: 10.1016/j.compstruct.2018.09.014. DOI
Liu T., Tian X., Zhang M., Abliz D., Li D., Ziegmann G. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites. Compos. Part A Appl. Sci. Manuf. 2018;114:368–376. doi: 10.1016/j.compositesa.2018.09.001. DOI
Heidari-Rarani M., Rafiee-Afarani M., Zahedi A. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019;175:107147. doi: 10.1016/j.compositesb.2019.107147. DOI
Ivey M., Melenka G.W., Carey J.P., Ayranci C. Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv. Manuf. Polym. Compos. Sci. 2017;3:81–91. doi: 10.1080/20550340.2017.1341125. DOI
Ferreira R.T.L., Amatte I.C., Dutra T.A., Bürger D. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos. Part B Eng. 2017;124:88–100. doi: 10.1016/j.compositesb.2017.05.013. DOI
Caminero M.Á., Chacón J.M., García-Plaza E., Núñez P.J., Reverte J.M., Becar J.P. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers. 2019;11:799. doi: 10.3390/polym11050799. PubMed DOI PMC
Calignano F., Lorusso M., Roppolo I., Minetola P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines. 2020;8:52. doi: 10.3390/machines8030052. DOI
Beniak J., Križan P., Šooš L., Matus M. Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment. IOP Conf. Ser. Mater. Sci. Eng. 2018;297:012018. doi: 10.1088/1757-899X/297/1/012018. DOI
Zmarzły P. Influence of bearing raceway surface topography on the level of generated vibration as an example of operational heredity. Indian J. Eng. Mater. Sci. 2020;27:356–364.
Zmarzły P. Multi-Dimensional Mathematical Wear Models of Vibration Generated by Rolling Ball Bearings Made of AISI 52100 Bearing Steel. Materials. 2020;13:5440. doi: 10.3390/ma13235440. PubMed DOI PMC
Kozior T., Bochnia J., Zmarzły P., Gogolewski D., Mathia T.G. Waviness of Freeform Surface Characterizations from Austenitic Stainless Steel (316L) Manufactured by 3D Printing-Selective Laser Melting (SLM) Technology. Materials. 2020;13:4372. doi: 10.3390/ma13194372. PubMed DOI PMC
Kozior T., Bochnia J. The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel. Micromachines. 2020;11:639. doi: 10.3390/mi11070639. PubMed DOI PMC
Xiao B., Huang Q., Chen H., Chen X., Long G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals. 2021;29:2150017. doi: 10.1142/S0218348X21500171. DOI
Xiao B., Zhang Y., Wang Y., Jiang G., Liang M., Chen X., Long G. A fractal model for Kozeny–Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces. Fractals. 2019;27:1950116. doi: 10.1142/S0218348X19501160. DOI
Gogolewski D. Influence of the edge effect on the wavelet analysis process. Measurement. 2020;152:107314. doi: 10.1016/j.measurement.2019.107314. DOI
Brown C.A., Hansen H.N., Jiang X.J., Blateyron F., Berglund J., Senin N., Bartkowiak T., Dixon B., Le Goïc G., Quinsat Y., et al. Multiscale analyses and characterizations of surface topographies. CIRP Ann. 2018;67:839–862. doi: 10.1016/j.cirp.2018.06.001. DOI
Gogolewski D. Fractional spline wavelets within the surface texture analysis. Measurement. 2021;179:109435. doi: 10.1016/j.measurement.2021.109435. DOI
Adamczak S., Zmarzły P., Stępień K. Identification and analysis of optimal method parameters of the V-block waviness measurements. Bull. Pol. Acad. Sci. Tech. Sci. 2016;64:325–332. doi: 10.1515/bpasts-2016-0037. DOI
Markforged The Mark Two Desktop 3D Printer. [(accessed on 14 April 2021)];2019 Available online: https://3d.markforged.com/say-hello.html?mfa=ga-search&.
Markforged. [(accessed on 14 April 2021)]; Available online: http://static.markforged.com/downloads/composites-data-sheet.pdf.
Yang C., Tian X., Liu T., Cao Y., Li D. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyp. J. 2017;23:209–215. doi: 10.1108/RPJ-08-2015-0098. DOI
PLA Structural Formula. [(accessed on 14 April 2021)]; Available online: https://omnexus.specialchem.com/selection-guide/polylactide-pla-bioplastic.
Polyamides. (n.d.) [(accessed on 14 April 2021)]; Available online: https://www.essentialchemicalindustry.org/polymers/polyamides.html.
Chabaud G., Castro M., Denoual C., Le Duigou A. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applica-tions. Addit. Manuf. 2019;26:94–105.
Naranjo-Lozada J., Ahuett-Garza H., Orta-Castañón P., Verbeeten W.M., Sáiz-González D. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit. Manuf. 2019;26:227–241. doi: 10.1016/j.addma.2018.12.020. DOI