3D Printed Hollow Off-Axis Profiles Based on Carbon Fiber-Reinforced Polymers: Mechanical Testing and Finite Element Method Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34502990
PubMed Central
PMC8434518
DOI
10.3390/polym13172949
PII: polym13172949
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, FEM analysis, SEM analysis, carbon fibers, composite polymer materials, fused deposition modeling, hollow profile,
- Publikační typ
- časopisecké články MeSH
The aim of the paper is to design, manufacture, and test an off-axis composite profile of circular cross-section. Composite profile based on continuous carbon fibers reinforcing the onyx matrix, i.e., a matrix that consists of nylon and micro carbon fibers, was produced by fused deposition modeling (FDM) method. A buckling test of the six printed composite specimens was performed on a tensile test machine. The values of the experiment were compared with the values of the computational simulation using the Finite Element Method (FEM) analysis. The mean value of the experimentally determined critical force at which the composite profile failed was 3102 N, while the value of the critical force by FEM analysis was calculated to be 2879 N. Thus, reliability of the simulation to determine the critical force differed from the experimental procedure by only 7%. FEM analysis revealed that the primary failure of 3D printed composite parts was not due to loss of stability, but due to material failure. With great accuracy, the results of the comparison show that it is possible to predict the mechanical properties of 3D printed composite laminates on the basis of a theoretical model.
Zobrazit více v PubMed
Yang C., Kim Y., Ryu S., Gu G.X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 2020;189:108509. doi: 10.1016/j.matdes.2020.108509. DOI
Prabhakar M.M., Rajini N., Ayrilmis N., Mayandi K., Siengchin S., Senthilkumar K., Karthikeyan S., Ismail S.O. An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos. Struct. 2019;230:114419. doi: 10.1016/j.compstruct.2019.111419. DOI
Sreejith M., Rajeev R.S. Fiber Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2021. Fiber reinforced composites for aerospace and sports applications; pp. 821–859.
UK Composites Medical Application for Cmposite Materials. [(accessed on 5 July 2021)]; Available online: https://compositesuk.co.uk/composite-materials/applications/medical.
Hebei Maple Fiberglass FRP Machining. [(accessed on 3 May 2021)]; Available online: http://www.frpmachining.com/faqs/frpgrp-pipe-filament-winding-machine.
Alnex Composites. [(accessed on 13 May 2021)]; Available online: https://www.allnex.com/en/technologies/composites.
Chen A.Y., Baehr S., Turner A., Zhang Z., Gu G.X. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties. Int. J. Lightweight Mater. Manuf. 2021;4:468–479.
Tian X., Liu T., Yang C., Wang Q., Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016;88:198–205. doi: 10.1016/j.compositesa.2016.05.032. DOI
Touchard F., Chocinski-Arnault L., Fournier T., Magro C., Lafitte A., Caradec A. Interfacial adhesion quality in 3D printed continuous CF/PA6 composites at filament/matrix and interlaminar scales. Compos. Part B Eng. 2021;218:108891. doi: 10.1016/j.compositesb.2021.108891. DOI
Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002. DOI
Popescu D., Zapciu A., Amza C., Baciu F., Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018;69:157–166. doi: 10.1016/j.polymertesting.2018.05.020. DOI
Zhang H., Chen J., Yang D. Fibre misalignment and breakage in 3D printing of continuous carbon fibre reinforced thermoplastic composites. Addit. Manuf. 2021;38:101775.
Wang K., Li S., Rao Y., Wu Y., Peng Y., Yao S., Zhang H., Ahzi S. Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. Polymers. 2019;11:1878. doi: 10.3390/polym11111878. PubMed DOI PMC
Guessasma S., Belhabib S., Nouri H. Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature. Polymers. 2019;11:1778. doi: 10.3390/polym11111778. PubMed DOI PMC
Zhang Z., Demir K.G., Gu G.X. Developments in 4D-printing: A review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 2019;10:205–224. doi: 10.1080/19475411.2019.1591541. DOI
Badini C., Padovano E., De Camillis R., Lambertini V.G., Pietroluongo M. Preferred orientation of chopped fibers in polymer-based composites processed by selective laser sintering and fused deposition modeling: Effects on mechanical properties. J. Appl. Polym. Sci. 2020;137:49152. doi: 10.1002/app.49152. DOI
Spoerk M., Savandaiah C., Arbeiter F., Traxler G., Cardon L., Holzer C., Sapkota J. Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos. Part A Appl. Sci. Manuf. 2018;113:95–104. doi: 10.1016/j.compositesa.2018.06.018. DOI
Prajapati A.R., Harshit K., Dave H.K., Raval H.K. Effect of fiber reinforcement on the open hole tensile strength of 3D printed composites. Mater. Today Proc. 2021;46:8629–8633. doi: 10.1016/j.matpr.2021.03.597. DOI
Dickson A.N., Abourayana H.M., Dowling D.P. 3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review. Polymers. 2020;12:2188. doi: 10.3390/polym12102188. PubMed DOI PMC
Wang P., Zou B., Ding S., Huang C., Shi Z., Ma Y., Yao P. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos. Part B Eng. 2020;198:108175. doi: 10.1016/j.compositesb.2020.108175. DOI
Kabir S.M.F., Mathur K., Seyam A.F.M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Compos. Struct. 2020;232:111476. doi: 10.1016/j.compstruct.2019.111476. DOI
Al Rashid A., Koҫ M. Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites. Polymers. 2021;13:1644. doi: 10.3390/polym13101644. PubMed DOI PMC
Markforged. [(accessed on 13 May 2021)]; Available online: https://markforged.com/3d-printers/x7.
Justo J., Távara L., Garzía-Guzmán L., París F. Characterization of 3D printed long fibre reinforced composites. Compos. Struct. 2018;185:537–548. doi: 10.1016/j.compstruct.2017.11.052. DOI
Korkees F., Allenby J., Dorrington P. 3D printing of composites: Design parameters and flexural performance. Rapid Prototyp. J. 2020;26:699–706. doi: 10.1108/RPJ-07-2019-0188. DOI
Mohammadizadeh M., Imeri A., Fidan I., Elkelany M. 3D printed fiber reinforced polymer composites - Structural analysis. Compos. Part B Eng. 2019;175:107112. doi: 10.1016/j.compositesb.2019.107112. DOI
Pertuz A.D., Díaz-Cardona S., González-Estrada O.A. Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique. Int. J. Fatigue. 2020;130:105275. doi: 10.1016/j.ijfatigue.2019.105275. DOI
Yasa E., Ersoy K. Dimensional Accuracy and Mechanical Properties of Chopped Carbon Reinforced Polymers Produced by Material Extrusion Additive Manufacturing. Materials. 2019;12:3885. doi: 10.3390/ma12233885. PubMed DOI PMC
Wickramasinghe S., Do T., Tran P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers. 2020;12:1529. doi: 10.3390/polym12071529. PubMed DOI PMC
Pyl L., Kalteremidou K.A., Hemelrijck D.V. Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests. Compos. Sci. Technol. 2019;171:135–151. doi: 10.1016/j.compscitech.2018.12.021. DOI
Sanei S.H.R., Arndt A., Doles R. Open hole tensile testing of 3D printedcontinuous carbon fiber reinforced composites. J. Compos. Mater. 2020;54:2687–2695. doi: 10.1177/0021998320902510. DOI
Prajapati A.R., Dave H.K., Raval H.K. Influence of fiber rings on impact strengthof 3d printed fiber reinforced polymer composite. Manuf. Technol. 2020;12:157–163.
Ekoi E.J., Dickson A.N., Dowling D.P. Dowling. Investigating the fatigue and mechanical behaviour of 3D printed woven and nonwoven continuous carbon fibre reinforced polymer (CFRP) composites. Compos. Part B Eng. 2021;212:108704. doi: 10.1016/j.compositesb.2021.108704. DOI
Saghir F., Gohari S., Mozafari F., Moslemi N., Burvill C., Smith A., Lucas S. Mechanical characterization of particulated FRP composite pipes: A comprehensive experimental study. Polym. Test. 2021;93:107001. doi: 10.1016/j.polymertesting.2020.107001. DOI
Saharudin M.S., Hajnys J., Kozior T., Gogolewski D., Zmarzły P. Quality of Surface Texture and Mechanical Properties of PLA and PA-Based Material Reinforced with Carbon Fibers Manufactured by FDM and CFF 3D Printing Technologies. Polymers. 2021;13:1671. doi: 10.3390/polym13111671. PubMed DOI PMC
Zhuo P., Li S., Ashcroft I.A., Jones A.I. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Compos. Part B Eng. 2021;224:109143. doi: 10.1016/j.compositesb.2021.109143. DOI
Van de Werken N., Tekinalp H., Khanbolouki P., Ozcan S., Williams A., Tehrani M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2020;31:100962. doi: 10.1016/j.addma.2019.100962. DOI
Naveen J., Mohammad Jawaid M., Vasanthanathan A., Chandrasekar M. Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier; Amsterdam, The Netherlands: 2019. Finite element analysis of natural fiber-reinforced polymer composites; pp. 153–170.
Gao J., Yang X., Huang L., Suo Y. Experimental study on mechanical properties of aramid fibres reinforced natural rubber/SBR composite for large deformation—Quasi-Static mechanical properties. Plast. Rubber Compos. 2018;47:381–390. doi: 10.1080/14658011.2018.1514480. DOI
Gohari S., Sharifi S., Burvill C., Mouloodi S., Izadifar M., Thissen P. Localized failure analysis of internally pressurized laminated ellipsoidal woven GFRP composite domes: Analytical, numerical, and experimental studies. Arch. Civ. Mech. Eng. 2019;19:1235–1250. doi: 10.1016/j.acme.2019.06.009. DOI
Potluri R., Diwakar V., Venkatesh K., Reddy S.B. Analytical Model Application for Prediction of Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Today Proc. 2018;5:5809–5818. doi: 10.1016/j.matpr.2017.12.178. DOI
Elmarakbi A., Azoti W., Serry M. Multiscale modelling of hybrid glass fibres reinforced graphene platelets polyamide PA6 matrix composites for crashworthiness applications. Appl. Mater. Today. 2017;6:1–8. doi: 10.1016/j.apmt.2016.11.003. DOI
Markforged. [(accessed on 1 April 2021)]; Available online: https://markforged.com/
Markforged. [(accessed on 6 July 2021)]; Available online: https://support.markforged.com/portal/s/article/Onyx/
ZwickRoell. [(accessed on 5 July 2021)]; Available online: https://www.zwickroell.com/
Callister W.D., Rethwish D.G. Materials Science and Engineering: An Introduction. 8th ed. Wiley; Hoboken, NJ, USA: 2010.
Ehrenstein G.W. Polymerni Kompozitni Materialy. 1st ed. Scientia; Prague, Czech Republic: 2009. pp. 133–194.
Partskhaladze G., Mshvenieradze I., Medzmariashvili E., Chavleshvili G., Yepes V., Alcala J. Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials. Adv. Civ. Eng. 2019;2019:7601260. doi: 10.1155/2019/7601260. DOI
Strong A.B. Fundamentals of Composites Manufacturing. 2nd ed. Society of Manufacturing Engineers; Southfield, MI, USA: 2008. pp. 463–485.
Sanei S.H.R., Popescu D. 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review. J. Compos. Sci. 2020;4:98. doi: 10.3390/jcs4030098. DOI
Fedotov A.F. Hybrid model of homogenization of engineering elastic moduli of composites reinforced with ellipsoid particles. Compos. Part B Eng. 2020;182:107585. doi: 10.1016/j.compositesb.2019.107585. DOI
Clyne T.W., Hull D. An Introduction to Composite Materials. 3rd ed. Cambridge University Press; New York, NY, USA: 2019.
Adeniyi A.G., Adeoye S.A., Onifade D.V., Ighalo J.O. Multi-scale finite element analysis of effective elastic property of sisal fiber-reinforced polystyrene composites. Mech. Adv. Mater. Struct. 2021;28:1245–1253. doi: 10.1080/15376494.2019.1660016. DOI