Resistance and Strength of Conductive PLA Processed by FDM Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35215591
PubMed Central
PMC8877385
DOI
10.3390/polym14040678
PII: polym14040678
Knihovny.cz E-zdroje
- Klíčová slova
- FDM, additive manufacturing, conductive, electro conductive, fused deposition modeling, resistance, strength,
- Publikační typ
- časopisecké články MeSH
There is a large number of materials that can be used for FDM additive manufacturing technology. These materials have different strength properties, they are designed for different purposes. They can be highly strong or flexible, abrasion-resistant, or designed for example for environments with higher thermal loads. However recently new innovative and progressive materials have come to the practice, which include nano-composite particles, bringing new added value. One such material is the Conductive PLA material, which is capable of conducting electric current. The aim of this article is to present the material properties of this material. The article describes the design of the experiment, the process of measuring the resistance of samples printed by FDM device, measuring the maximum tensile strength of samples. The article includes a statistical evaluation of the measured data, with the determination of the significance of individual factors of the experiment as well as the evaluation of the overall result of the experiments.
Zobrazit více v PubMed
Brancewicz-Steinmetz E., Sawicki J., Byczkowska P. The Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) Materials. 2021;14:6464. doi: 10.3390/ma14216464. PubMed DOI PMC
Daminabo S.C., Goel S., Grammatikos S.A., Nezhad H.Y., Thakur V.K. FDM-based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems. Mater. Today. 2020;16:100248. doi: 10.1016/j.mtchem.2020.100248. DOI
Gordelier T.J., Thies P.R., Turner L., Johanning L. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review. Rapid Prototyp. J. 2019;25:953–971. doi: 10.1108/RPJ-07-2018-0183. DOI
Özen A., Auhl D., Völlmecke C., Kiendl J., Abali B.E. Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG. Materials. 2021;14:2556. doi: 10.3390/ma14102556. PubMed DOI PMC
Beniak J., Križan P., Šooš Ľ., Matúš M. Research on Shape and Dimensional Accuracy of FDM Produced Parts. IOP Conf. Ser. Mater. Sci. Eng. 2019;501:012030. doi: 10.1088/1757-899X/501/1/012030. DOI
Verdejo de Toro E., Coello Sobrino J., Martínez Martínez A., Miguel Eguía V., Ayllón Pérez J. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM) Materials. 2020;13:672. doi: 10.3390/ma13030672. PubMed DOI PMC
Kim H., Park E., Kim S., Park B., Kim N., Lee S. Experimental study on mechanical properties of single- and dual-material 3D printed products. Procedia Manuf. 2017;10:887–897. doi: 10.1016/j.promfg.2017.07.076. DOI
Travieso-Rodriguez J.A., Jerez-Mesa R., Llumà J., Traver-Ramos O., Gomez-Gras G., Roa Rovira J.J. Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials. 2019;12:3859. doi: 10.3390/ma12233859. PubMed DOI PMC
Zhang J., Jung Y. Additive Manufacturing: Materials, Processes, Quantifications and Applications. Butterworth-Heinemann; Oxford, UK: Elsevier; Amsterdam, The Netherlands: 2018.
EasyWood PLA Material, Formfutura, Online. [(accessed on 15 December 2021)]. Available online: https://formfutura.com/shop/product/easywood-2804?category=465.
Srivatsan T., Sudarshan T. Additive Manufacturing: Innovations, Advances, and Applications. CRC Press; Boca Raton, FL, USA: Taylor & Francis; Abingdon-on-Thames, UK: 2015.
Kalova M., Rusnakova S., Krzikalla D., Mesicek J., Tomasek R., Podeprelova A., Rosicky J., Pagac M. 3D Printed Hollow Off-Axis Profiles Based on Carbon Fiber-Reinforced Polymers: Mechanical Testing and Finite Element Method Analysis. Polymers. 2021;13:2949. doi: 10.3390/polym13172949. PubMed DOI PMC
Stejskal T., Dovica M., Svetlik J., Demec P. Experimental assessment of the static stiffness of machine parts and structures by changing the magnitude of the hysteresis as a function of loading. Open Eng. 2019;9:655–659. doi: 10.1515/eng-2019-0078. DOI
Silva J.V., Rezende R.A. Additive Manufacturing and its future impact in logistics. IFAC Proc. 2013;46:277–282. doi: 10.3182/20130911-3-BR-3021.00126. DOI
Lee B.N., Pei E., Um J. An overview of information technology standardization activities related to additive manufacturing. Prog. Addit. Manuf. 2019;4:345–354. doi: 10.1007/s40964-019-00087-5. DOI
Huang J.C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002;21:299–313. doi: 10.1002/adv.10025. DOI
Chen J., Du X.-C., Zhang W.-B., Yang J.-H., Zhang N., Huang T., Wang Y. Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos. Sci. Technol. 2013;81:1–8. doi: 10.1016/j.compscitech.2013.03.014. DOI
Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer. 2004;45:739–748. doi: 10.1016/j.polymer.2003.12.013. DOI
Zhang W., Dehghani-Sanij A.A., Blackburn R.S. Carbon based conductive polymercomposites. J. Mater. Sci. 2007;42:3408–3418. doi: 10.1007/s10853-007-1688-5. DOI
Shang S.M., Zeng W., Tao X.M. High stretchable MWNTs/polyurethaneconductive nanoomposites. J. Mater. Chem. 2011;21:7274–7280. doi: 10.1039/c1jm10255a. DOI
Liu X.-M., Huang Z.D., Oh S.W., Zhang B., Ma P.-C., Yuen M.M., Kim J.-K. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 2011;72:121–144. doi: 10.1016/j.compscitech.2011.11.019. DOI
Dharaiya D.P., Jana S.C., Lyuksyutov S.F. Production of electrically conductivenetworks in immiscible polymer blends by chaotic mixing. Polym. Eng. Sci. 2005;46:19–28. doi: 10.1002/pen.20445. DOI
Thongruang W., Spontak R.J., Balik C. Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer. 2002;43:2279–2286. doi: 10.1016/S0032-3861(02)00043-5. DOI
Ai-Saleh M.H., Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon. 2009;47:2–22. doi: 10.1016/j.carbon.2008.09.039. DOI
Ai-Saleh M.H., Sundararaj U. Processing-microstructure0property relationship in conductive polymer nanocomposites. Polymer. 2010;51:2740–2747. doi: 10.1016/j.polymer.2010.03.022. DOI
Costa P., Silva J., Sencadas V., Costa C.M., van Hattum F., Rocha J.G., Lanceros-Mendez S. The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon. 2009;47:2590–2599. doi: 10.1016/j.carbon.2009.05.011. DOI
Wang R.X., Tao X.M., Wang Y., Wang G.F., Shang S.M. Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf. Coat. Technol. 2010;204:1206–1210. doi: 10.1016/j.surfcoat.2009.10.030. DOI
Yang X.M., Li L., Shang S.M., Tao X.M. Water-based amorphous carbon nanotubes filled polymer nanocomposites. J. Appl. Polym. Sci. 2011;122:1986–1992. doi: 10.1002/app.34072. DOI
Liu F.J., Shang S.M., Duan Y.J., Li L. Electrical and optical properties of polymereAu nanocomposite films synthesized by magnetron co-sputtering. J. Appl. Polym. Sci. 2011;123:2800–2804. doi: 10.1002/app.34723. DOI
Shang S.M., Zeng W., Tao X.M. Highly Stretchable Conductive Polymer Composited with Carbon Nanotubes and Nanospheres. Adv. Mater. Res. 2010;123-125:109–112. doi: 10.4028/www.scientific.net/AMR.123-125.109. DOI
Dang Z.-M., Yuan J., Zha J.-W., Zhou T., Li S.-T., Hu G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2011;57:660–723. doi: 10.1016/j.pmatsci.2011.08.001. DOI
Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010;35:357–401. doi: 10.1016/j.progpolymsci.2009.09.003. DOI
Zhang Q.-H., Chen D.-J. Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA. J. Mater. Sci. 2004;39:1751–1757. doi: 10.1023/B:JMSC.0000016180.42896.0f. DOI
Li Y., Wang S.F., Zhang Y., Zhang Y.X. Carbon black-filled immiscible polypropylene/ epoxy blends. J. Appl. Polym. Sci. 2006;99:461–471. doi: 10.1002/app.22011. DOI
Yu J., Zhang L.Q., Rogunova M., Summers J., Hiltner A., Baer E. Conductivity of polyolefins filled with high-structure carbon black. J. Appl. Polym. Sci. 2005;98:1799–1805. doi: 10.1002/app.22238. DOI
Kausar A., Taherian R. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications. Elsevier; Amsterdam, The Netherlands: 2019. Electrical conductivity behavior of polymer nanocomposite with carbon nanofillers; pp. 41–72. DOI
Wen M., Sun X., Su L., Shen J., Li J., Guo S. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer. 2012;53:1602–1610. doi: 10.1016/j.polymer.2012.02.003. DOI
Balberg I. A comprehensive picture of the electrical phenomena in carbon blackepolymer composites. Carbon. 2002;40:139–143. doi: 10.1016/S0008-6223(01)00164-6. DOI
Luo S.J., Wong C.P. Study on effect of carbon black on behavior of conductive polymer composites with positive temperature coefficient. IEEE Trans. Compon. Packag. Technol. 2000;23:151–156. doi: 10.1109/6144.833054. DOI
Kohjiya S., Katoh A., Suda T., Shimanuki J., Ikeda Y. Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer. 2006;47:3298–3301. doi: 10.1016/j.polymer.2006.03.008. DOI
Beniak J., Krizan P., Matus M. Mechanical properties of biodegradable PLA plastic parts produced by 3D printing. MM Sci. J. 2019;2019:2746–2750. doi: 10.17973/MMSJ.2019_03_201806. DOI
Vanaei H., Shirinbayan M., Vanaei S., Fitoussi J., Khelladi S., Tcharkhtchi A. Multi-scale damage analysis and fatigue behavior of PLA manufactured by fused deposition modeling (FDM) Rapid Prototyp. J. 2020;27:371–378. doi: 10.1108/RPJ-11-2019-0300. DOI
Tirado-Garcia I., Garcia-Gonzalez D., Garzon-Hernandez S., Rusinek A., Robles G., Martinez-Tarifa J., Arias A. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Compos. Struct. 2021;265:113744. doi: 10.1016/j.compstruct.2021.113744. DOI
Stopforth R. Conductive polylactic acid filaments for 3D printed sensors: Experimental electrical and thermal characterization. Sci. Afr. 2021;14:e01040. doi: 10.1016/j.sciaf.2021.e01040. DOI
Marasso S.L., Cocuzza M., Bertana V., Perrucci F., Tommasi A., Ferrero S., Scaltrito L., Pirri C.F. PLA conductive filament for 3D printed smart sensing applications. Rapid Prototyp. J. 2018;24:739–743. doi: 10.1108/RPJ-09-2016-0150. DOI