Design and Behavior of Lightweight Flexible Structure with Spatial Pattern Reducing Contact Surface Fraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2023/027
This work was supported by Specific Research "Application of Modern Computational and Experimental Approaches in Applied Mechanics"
PubMed
37835945
PubMed Central
PMC10575436
DOI
10.3390/polym15193896
PII: polym15193896
Knihovny.cz E-zdroje
- Klíčová slova
- PA12, SLS, biomedical, flexible, lightweight, spatial, stiffness, structure,
- Publikační typ
- časopisecké články MeSH
Flexible structures are increasingly important in biomedical applications, where they can be used to achieve adaptable designs. This paper presents a study of the design and behavior of 3D-printed lightweight flexible structures. In this work, we focus on the design principles and numerical modelling of spatial patterns, as well as their mechanical properties and behavior under various loads. Contact surface fraction was determined as the ratio of the surface area of the printed pattern to the surface area of the entire curved surface. The objective of this work is to design a spatial pattern reducing contact surface fraction and develop a non-linear numerical model evaluating the structure's stiffness; in addition, we aimed to identify the best design pattern with respect to its stiffness:mass ratio. The experimental verification of the numerical model is performed on 3D-printed prototypes prepared using the Selective Laser Sintering (SLS) method and made of Nylon-Polyamide 12. The obtained results provide insights into designing and optimizing lightweight external biomedical applications such as prostheses, orthoses, helmets, or adaptive cushions.
Zobrazit více v PubMed
Seharing A., Azman A.H., Abdullah S. A review on integration of lightweight gradient lattice structures in additive manufacturing parts. Adv. Mech. Eng. 2020;12:1687814020916951. doi: 10.1177/1687814020916951. DOI
Sharma S., Singh J., Kumar H., Sharma A., Aggarwal V., Gill A.S., Jayarambabu N., Kailasa S., Rao K.V. Utilization of rapid prototyping technology for the fabrication of an orthopedic shoe inserts for foot pain reprieve using thermo-softening viscoelastic polymers: A novel experimental approach. Meas. Control. 2020;53:519–530. doi: 10.1177/0020294019887194. DOI
Lin K.W., Hu C.J., Yang W.W., Chou L.W., Wei S.H., Chen C.S., Sun P.C. Biomechanical Evaluation and Strength Test of 3D-Printed Foot Orthoses. Appl. Bionics Biomech. 2019;2019:4989534. doi: 10.1155/2019/4989534. PubMed DOI PMC
Prokop J., Marsalek P., Sengul I., Pelikan A., Janoutova J., Horyl P., Roman J., Sengul D., Junior J.M.S. Evaluation of breast stiffness pathology based on breast compression during mammography: Proposal for novel breast stiffness scale classification. Clinics. 2022;77:100100. doi: 10.1016/j.clinsp.2022.100100. PubMed DOI PMC
Holmes D.W., Singh D., Lamont R., Daley R., Forrestal D.P., Slattery P., Pickering E., Paxton N.C., Powell S.K., Woodruff M.A. Mechanical behaviour of flexible 3D printed gyroid structures as a tuneable replacement for soft padding foam. Addit. Manuf. 2022;50:102555. doi: 10.1016/j.addma.2021.102555. DOI
Sotola M., Stareczek D., Rybansky D., Prokop J., Marsalek P. New Design Procedure of Transtibial Prosthesis Bed Stump Using Topological Optimization Method. Symmetry. 2020;12:1837. doi: 10.3390/sym12111837. DOI
Sotola M., Marsalek P., Rybansky D., Fusek M., Gabriel D. Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam. Symmetry. 2021;13:712. doi: 10.3390/sym13040712. DOI
Kundera C., Kozior T. Evaluation of the influence of selected parameters of Selective Laser Sintering technology on surface topography. J. Phys. Conf. Ser. 2019;1183:012002. doi: 10.1088/1742-6596/1183/1/012002. DOI
Kundera C., Kozior T. Mechanical properties of models prepared by SLS technology. AIP Conf. Proc. 2018;2017:020012. doi: 10.1063/1.5056275. DOI
Saharudin M.S., Hajnys J., Kozior T., Gogolewski D., Zmarzły P. Quality of Surface Texture and Mechanical Properties of PLA and PA-Based Material Reinforced with Carbon Fibers Manufactured by FDM and CFF 3D Printing Technologies. Polymers. 2021;13:1671. doi: 10.3390/polym13111671. PubMed DOI PMC
Mesicek J., Ma Q.P., Hajnys J., Zelinka J., Pagac M., Petru J., Mizera O. Abrasive Surface Finishing on SLM 316L Parts Fabricated with Recycled Powder. Appl. Sci. 2021;11:2869. doi: 10.3390/app11062869. DOI
Bacciaglia A., Ceruti A., Liverani A. Surface smoothing for topological optimized 3D models. Struct. Multidiscip. Optim. 2021;64:3453–3472. doi: 10.1007/s00158-021-03027-6. DOI
Wang P., Yang J., Hu Y., Huo J., Feng X. Innovative design of a helmet based on reverse engineering and 3D printing. Alex. Eng. J. 2021;60:3445–3453. doi: 10.1016/j.aej.2021.02.006. DOI
Jafferson J., Pattanashetti S. Use of 3D printing in production of personal protective equipment (PPE)—A review. Mater. Today Proc. 2021;46:1247–1260. doi: 10.1016/j.matpr.2021.02.072. DOI
Sharma D., Hiremath S.S. Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study. Compos. Struct. 2022;283:115102. doi: 10.1016/j.compstruct.2021.115102. DOI
Pan C., Han Y., Lu J. Design and Optimization of Lattice Structures: A Review. Appl. Sci. 2020;10:6374. doi: 10.3390/app10186374. DOI
Vasiliev V., Razin A. Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 2006;76:182–189. doi: 10.1016/j.compstruct.2006.06.025. DOI
Alqahtani S., Ali H.M., Farukh F., Kandan K. Experimental and computational analysis of polymeric lattice structure for efficient building materials. Appl. Therm. Eng. 2023;218:119366. doi: 10.1016/j.applthermaleng.2022.119366. DOI
Fernandez-Vicente M., Calle W., Ferrandiz S., Conejero A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016;3:183–192. doi: 10.1089/3dp.2015.0036. DOI
Tao W., Leu M.C. Design of lattice structure for additive manufacturing; Proceedings of the 2016 International Symposium on Flexible Automation (ISFA); Cleveland, OH, USA. 1–3 August 2016; pp. 325–332. DOI
Ali M.H., Smagulov Z., Otepbergenov T. Finite element analysis of the CFRP-based 3D printed ankle-foot orthosis. Procedia Comput. Sci. 2021;179:55–62. doi: 10.1016/j.procs.2020.12.008. DOI
Panetta J., Zhou Q., Malomo L., Pietroni N., Cignoni P., Zorin D. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 2015;34:1–12. doi: 10.1145/2766937. DOI
Schumacher C., Thomaszewski B., Gross M. Stenciling: Designing Structurally-Sound Surfaces with Decorative Patterns. Comput. Graph. Forum. 2016;35:101–110. doi: 10.1111/cgf.12967. DOI
Schumacher C., Marschner S., Gross M., Thomaszewski B. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 2018;37:1–15. doi: 10.1145/3197517.3201278. DOI
Kantaros A., Piromalis D. Fabricating Lattice Structures via 3D Printing: The Case of Porous Bio-Engineered Scaffolds. Appl. Mech. 2021;2:289–302. doi: 10.3390/applmech2020018. DOI
Marsalek P., Sotola M., Rybansky D., Repa V., Halama R., Fusek M., Prokop J. Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications. Materials. 2021;14:140. doi: 10.3390/ma14010140. PubMed DOI PMC
Kusnir O. Master’s Thesis. VSB-Technical University of Ostrava; Ostrava, Czech Republic: 2021. Modelling of 3D Printed Spatial Structures.
Rybansky D., Sotola M., Marsalek P., Drahorad L., Hroncek J., Kusnir O. Modelling and Testing of 3D Printed Flexible Structure with Spatial Pattern; Experimental Stress Analysis 2022 Book of Extended Abstract. 1st ed. Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Mechanics, Biomechanics and Mechatronics; Prague, Czech Republic: 2022. pp. 118–119.
Stoia D.I., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials. 2019;12:871. doi: 10.3390/ma12060871. PubMed DOI PMC
Kundera C., Kozior T. Research of the Elastic Properties of Bellows Made in SLS Technology. Adv. Mater. Res. 2014;874:77–81. doi: 10.4028/www.scientific.net/AMR.874.77. DOI
Hroncek J., Marsalek P., Rybansky D., Sotola M., Drahorad L., Lesnak M., Fusek M. Simplified Numerical Model for Determining Load-Bearing Capacity of Steel-Wire Ropes. Materials. 2023;16:3756. doi: 10.3390/ma16103756. PubMed DOI PMC
Cech R., Horyl P., Marsalek P. Modelling of Two-Seat Connection to the Frame of Rail Wagon in Terms of Resistance at Impact Test. Stroj. Cas. J. Mech. Eng. 2016;66:101–106. doi: 10.1515/scjme-2016-0024. DOI
Lesnak M., Marsalek P., Horyl P., Pistora J. Load-bearing capacity modelling and testing of single-stranded wire rope. Acta Montan. Slovaca. 2020;25:192–200. doi: 10.46544/AMS.v25i2.6. DOI
Rybansky D., Sotola M., Marsalek P., Poruba Z., Fusek M. Study of Optimal Cam Design of Dual-Axle Spring-Loaded Camming Device. Materials. 2021;14:1940. doi: 10.3390/ma14081940. PubMed DOI PMC
Morales-Planas S., Minguella-Canela J., Lluma-Fuentes J., Travieso-Rodriguez J.A., García-Granada A.A. Multi Jet Fusion PA12 Manufacturing Parameters for Watertightness, Strength and Tolerances. Materials. 2018;11:1472. doi: 10.3390/ma11081472. PubMed DOI PMC
Kinstlinger I.S., Bastian A., Paulsen S.J., Hwang D.H., Ta A.H., Yalacki D.R., Schmidt T., Miller J.S. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone. PLoS ONE. 2016;11:e0147399. doi: 10.1371/journal.pone.0147399. PubMed DOI PMC