Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications

. 2020 Dec 30 ; 14 (1) : . [epub] 20201230

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396971

Flexible structures (FS) are thin shells with a pattern of holes. The stiffness of the structure in the normal direction is reduced by the shape of gaps rather than by the choice of the material based on mechanical properties such as Young's modulus. This paper presents virtual prototyping of 3D printed flexible structures with selected planar patterns using laboratory testing and computer modeling. The objective of this work is to develop a non-linear computational model evaluating the structure's stiffness and its experimental verification; in addition, we aimed to identify the best of the proposed patterns with respect to its stiffness: load-bearing capacity ratio. Following validation, the validated computational model is used for a parametric study of selected patterns. Nylon-Polyamide 12-was chosen for the purposes of this study as an appropriate flexible material suitable for 3D printing. At the end of the work, a computational model of the selected structure with modeling of load-bearing capacity is presented. The obtained results can be used in the design of external biomedical applications such as orthoses, prostheses, cranial remoulding helmets padding, or a new type of adaptive cushions. This paper is an extension of the conference paper: "Modeling and Testing of 3D Printed Flexible Structures with Three-pointed Star Pattern Used in Biomedical Applications" by authors Repa et al.

Zobrazit více v PubMed

Wang S., Wang H., Ding Y., Yu F. Crushing behavior and deformation mechanism of randomly honeycomb cylindrical shell structure. Thin-Walled Struct. 2020;151 doi: 10.1016/j.tws.2020.106739. DOI

Paik J.K., Thayamballi A.K., Kim G.S. The strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Struct. 1999;35:205–231. doi: 10.1016/S0263-8231(99)00026-9. DOI

Cheng L., Bai J., To A.C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput. Methods Appl. Mech. Eng. 2019;344:334–359. doi: 10.1016/j.cma.2018.10.010. DOI

Marsalek P., Grygar A., Karasek T., Brzobohaty T. Virtual prototyping of 3D printed cranial orthoses by finite element analysis; Proceedings of the Central European Symposium on Thermophysics 2019 (CEST); Banska Bystrica, Slovakia. 16–18 October 2019; p. 320010. DOI

Nagesha B., Dhinakaran V., Shree M.V., Kumar K.M., Chalawadi D., Sathish T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater. Today Proc. 2020;21:916–919. doi: 10.1016/j.matpr.2019.08.158. DOI

Alberdi R., Dingreville R., Robbins J., Walsh T., White B.C., Jared B., Boyce B.L. Multi-morphology lattices lead to improved plastic energy absorption. Mater. Des. 2020;194:1–10. doi: 10.1016/j.matdes.2020.108883. DOI

Quoc P.M., Krzikalla D., Mesicek J., Petru J., Smiraus J., Sliva A., Poruba Z. On Aluminum Honeycomb Impact Attenuator Designs for Formula Student Competitions. Symmetry. 2020;12:1647. doi: 10.3390/sym12101647. DOI

Sotola M., Stareczek D., Rybansky D., Prokop J., Marsalek P. New Design Procedure of Transtibial Prosthesis Bed Stump Using Topological Optimization Method. Symmetry. 2020;12:1837. doi: 10.3390/sym12111837. DOI

Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074. PubMed DOI PMC

Lee H.E., Park J.H., Jang D., Shin J.H., Im T.H., Lee J.H., Hong S.K., Wang H.S., Kwak M.S., Peddigari M., et al. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy. 2020;75:104951. doi: 10.1016/j.nanoen.2020.104951. DOI

Kim D.H., Shin H.J., Lee H., Jeong C.K., Park H., Hwang G.T., Lee H.Y., Joe D.J., Han J.H., Lee S.H., et al. In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters. Adv. Funct. Mater. 2017;27:1700341. doi: 10.1002/adfm.201700341. DOI

Schumacher C., Marschner S., Gross M., Thomaszewski B. Mechanical characterization of structured sheet materials. ACM Trans. Graph. 2018;37:1–15. doi: 10.1145/3197517.3201278. DOI

Bickel B., Bächer M., Otaduy M.A., Lee H.R., Pfister H., Gross M., Matusik W. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. (TOG) 2010;29:63. doi: 10.1145/1778765.1778800. DOI

Schumacher C., Thomaszewski B., Gross M. Stenciling. Comput. Graph. Forum. 2016;35:101–110. doi: 10.1111/cgf.12967. DOI

Hussain G., Khan W.A., Ashraf H.A., Ahmad H., Ahmed H., Imran A., Ahmad I., Rehman K., Abbas G. Design and development of a lightweight SLS 3D printer with a controlled heating mechanism. Int. J. Lightweight Mater. Manuf. 2019;2:373–378. doi: 10.1016/j.ijlmm.2019.01.005. DOI

Cai C., Tey W.S., Chen J., Zhu W., Liu X., Liu T., Zhao L., Zhou K. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 2021;288:116882. doi: 10.1016/j.jmatprotec.2020.116882. DOI

Řepa V., Maršálek P., Prokop J., Rybanský D., Halama R. Experimental Stress Analysis 2020. 1st ed. VSB—Technical University of Ostrava; Ostrava, Czech Republic: 2020. Modelling and Testing of 3D Printed Flexible Structures with Three-pointed Star Pattern Used in Biomedical Applications; pp. 145–147.

Faustini M.C., Neptune R.R., Crawford R.H., Rogers W.E., Bosker G. An Experimental and Theoretical Framework for Manufacturing Prosthetic Sockets for Transtibial Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2006;14:304–310. doi: 10.1109/TNSRE.2006.881570. PubMed DOI

Lammens N., De Baere I., Van Paepegem W. On the orthotropic elasto-plastic material response of additively manufactured polyamide 12. In: Ragaert K., Delva L., Cardon L., editors. Proceedings of the 7th Bi-Annual International Conference of Polymers & Moulds Innovations; Ghent, Belgium. 21–23 September 2016; Ghent, Belgium: Academic Bibliography; 2016. p. 6.

Stoia D., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials. 2019;12:871. doi: 10.3390/ma12060871. PubMed DOI PMC

Kminek T., Marsalek P., Karasek T. AIP Conference Proceedings. Volume 2116. AIP Publishing LLC; Melville, NY, USA: 2019. Analysis of steel tanks for water storage using shell elements; p. 320007. DOI

Lesnak M., Marsalek P., Horyl P., Pistora J. Load-bearing capacity modelling and testing of single-stranded wire rope. Acta Montan. Slovaca. 2020;25:192–200.

Horyl P., Snuparek R., Marsalek P., Poruba Z., Paczesniowski K. Parametric studies of total load-bearing capacity of steel arch supports. Acta Montanistica Slovaca. 2019;24:213–222.

Bai J., Song J., Wei J. Tribological and mechanical properties of MoS2 enhanced polyamide 12 for selective laser sintering. J. Mater. Process. Technol. 2019;264:382–388. doi: 10.1016/j.jmatprotec.2018.09.026. DOI

Dorčiak F., Vaško M., Handrik M., Bárnik F., Majko J. Tensile test for specimen with different size and shape of inner structures created by 3D printing. Transp. Res. Procedia. 2019;40:671–677. doi: 10.1016/j.trpro.2019.07.095. DOI

Dorčiak F., Vaško M., Bárnik F., Majko J. Comparison of experimental flexural test with FE analysis for specimen with different size and shape of internal structure created by 3D printing’s. IOP Conf. Ser. Mater. Sci. Eng. 2020;776:012078. doi: 10.1088/1757-899X/776/1/012078. DOI

Halama R., Pagáč M., Paška Z., Pavlíček P., Chen X. Ratcheting Behaviour of 3D Printed and Conventionally Produced SS316L Material; Proceedings of the ASME 2019 Pressure Vessels & Piping Conference; San Antonio, TX, USA. 14–19 July 2019; DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...