Simplified Numerical Model for Determining Load-Bearing Capacity of Steel-Wire Ropes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2023/027
The Ministry of Education, Youth and Sports
PubMed
37241387
PubMed Central
PMC10222766
DOI
10.3390/ma16103756
PII: ma16103756
Knihovny.cz E-zdroje
- Klíčová slova
- failure, finite element method, load-bearing capacity, modeling, plastic strain, steel rope, tensile test,
- Publikační typ
- časopisecké články MeSH
Steel-wire rope is a mechanical component that has versatile uses and on which human lives depend. One of the basic parameters that serve to describe the rope is its load-bearing capacity. The static load-bearing capacity is a mechanical property characterized by the limit static force that the rope is able to endure before it breaks. This value depends mainly on the cross-section and the material of the rope. The load-bearing capacity of the entire rope is obtained in tensile experimental tests. This method is expensive and sometimes unavailable due to the load limit of testing machines. At present, another common method uses numerical modeling to simulate an experimental test and evaluates the load-bearing capacity. The finite element method is used to describe the numerical model. The general procedure for solving engineering tasks of load-bearing capacity is by using the volume (3D) elements of a finite element mesh. The computational complexity of such a non-linear task is high. Due to the usability of the method and its implementation in practice, it is necessary to simplify the model and reduce the calculation time. Therefore, this article deals with the creation of a static numerical model which can evaluate the load-bearing capacity of steel ropes in a short time without compromising accuracy. The proposed model describes wires using beam elements instead of volume elements. The output of modeling is the response of each rope to its displacement and the evaluation of plastic strains in the ropes at selected load levels. In this article, a simplified numerical model is designed and applied to two constructions of steel ropes, namely the single strand rope 1 × 37 and multi-strand rope 6 × 7-WSC.
Zobrazit více v PubMed
Boroska J., Hulin J., Lesnak O. Steel-Wire Ropes. ALFA; Bratislava, Slovakia: 1982. 480p
Yao G., He X., Liu J., Guo Z., Chen P. Test Study of the Bridge Cable Corrosion Protection Mechanism Based on Impressed Current Cathodic Protection. Lubricants. 2023;11:30. doi: 10.3390/lubricants11010030. DOI
Li D., Ou J., Lan C., Li H.H. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors. Sensors. 2012;12:3901–3915. doi: 10.3390/s120403901. PubMed DOI PMC
CraneTech Wire Rope Damage Types and Causes of Failure. [(accessed on 25 November 2022)]. Available online: https://www.cranetechusa.com/wire-rope-damage-types.
Mouradi H., El Barkany A., El Biyaali A. steel-wire ropes failure analysis: Experimental study. Eng. Fail. Anal. 2018;91:234–242. doi: 10.1016/j.engfailanal.2018.04.019. DOI
What We Can Learn from Wire Rope Failures: Predictable and Unpredictable Rope Failures. [(accessed on 25 November 2022)]. Available online: http://ropetechnology.com/bro_engl/paper_failures.pdf.
Morelli F., Panzera I., Piscini A., Salvatore W., Chichi F., Marconi G., Maestrini D., Gammino M., Mori M. X-ray measure of tensile force in post-tensioned steel cables. Constr. Build. Mater. 2021;305:124743. doi: 10.1016/j.conbuildmat.2021.124743. DOI
Utting W.S., Jones N. Tensile testing of a wire rope strand. J. Strain Anal. Eng. 1985;20:151–164. doi: 10.1243/03093247V203151. DOI
Onur Y.A. Experimental and theoretical investigation of prestressing steel strand subjected to tensile load. Int. J. Mech. Sci. 2016;118:91–100. doi: 10.1016/j.ijmecsci.2016.09.006. DOI
Musca G.D., Debeleac C., Vlase S. Experimental Assessments on the Evaluation of Wire Rope Characteristics as Helical Symmetrical Multi-body Ensembles. Symmetry. 2020;12:1231. doi: 10.3390/sym12081231. DOI
Zhou P., Zhou G., Zhu Z., He Z., Ding X., Tang C. A Review of Non-Destructive Damage Detection Methods for steel-wire ropes. Appl. Sci. 2019;9:2771. doi: 10.3390/app9132771. DOI
Machida S., Durelli A.J. Response of a strand to axial and torsional displacements. J. Mech. Eng. Sci. 1973;15:241–251. doi: 10.1243/JMES_JOUR_1973_015_045_02. DOI
Phillips J.W., Costello G.A. Contact stresses in twisted wire cables. J. Eng. Mech. Div. 1973;99:331–341. doi: 10.1061/JMCEA3.0001739. DOI
Costello G.A., Phillips J.W. Effective modulus of twisted wire cables. J. Eng. Mech. Div. 1976;102:171–181. doi: 10.1061/JMCEA3.0002092. DOI
Velinsky S.A., Anderson G.L., Costello G.A. Wire rope with complex cross-sections. J. Eng. Mech. 1984;110:380–391. doi: 10.1061/(ASCE)0733-9399(1984)110:3(380). DOI
Velinsky S.A. General Non-linear theory for complex wire rope. Int. J. Mech. Sci. 1985;27:497–507. doi: 10.1016/0020-7403(85)90040-2. DOI
Utting W.S., Jones N. The response of wire rope strands to axial tensile loads–Part I. Comparison of experimental results and theoretical predictions. Int. J. Mech. Sci. 1987;29:605–619. doi: 10.1016/0020-7403(87)90033-6. DOI
Ghoreishi S.R., Messager T., Cartraud P., Davies P. Validity and Limitations of Linear Analytical Models for Steel Wire Strands Under Axial Loading, Using a 3D FE Model. Int. J. Mech. Sci. 2007;49:1251–1261. doi: 10.1016/j.ijmecsci.2007.03.014. DOI
Lesnak M., Marsalek P., Horyl P., Pistora J. Load-Bearing Capacity Modelling and Testing of Single-Stranded Wire Rope. Acta Montan. Slovaca. 2020;25:192–200.
Foti F., Di Roseto A.D. Analytical and Finite Element Modelling of the Elastic-Plastic Behaviour of Metallic Strands Under Axial-Torsional Loads. Int. J. Mech. Sci. 2016;115:202–214. doi: 10.1016/j.ijmecsci.2016.06.016. DOI
Judge R., Yang Z., Jones S.W., Beattie G. Full 3D Finite Element Modelling of Spiral Strand Cables. Constr. Build. Mater. 2012;35:452–459. doi: 10.1016/j.conbuildmat.2011.12.073. DOI
Bruski D. Determination of the Bending Properties of Wire Rope Used in Cable Barrier Systems. Materials. 2020;13:3842. doi: 10.3390/ma13173842. PubMed DOI PMC
Miyamura T., Yoshimura S. Balancing domain decomposition method for large-scale analysis of an assembly structure having millions of multipoint constraints. Comput. Methods Appl. Mech. Eng. 2023;405:115846. doi: 10.1016/j.cma.2022.115846. DOI
Hroncek J. Diploma Thesis. VSB-Technical University of Ostrava; Ostrava, Czech Republic: 2021. Load-Bearing Capacity Modelling of Wire Rope.
Marsalek P., Sotola M., Rybansky D., Repa V., Halama R., Fusek M., Prokop J. Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications. Materials. 2021;14:140. doi: 10.3390/ma14010140. PubMed DOI PMC
Horyl P., Snuparek R., Marsalek P., Poruba Z., Paczesniowski K. Parametric studies of total load-bearing capacity of steel arch supports. Acta Montan. Slovaca. 2019;24:213–222.
Cech R., Horyl P., Marsalek P. Modelling of two-seat connection to the frame of rail wagon in terms of resistance at impact test. Stroj. Cas. 2016;66:101–106.
Zhang P., Duan M., Ma J., Zhang Y. A precise mathematical model for geometric modeling of wire rope strands structure. Appl. Math. Model. 2019;76:151–171. doi: 10.1016/j.apm.2019.06.005. DOI
Sejda F., Frydrysek K., Pleva L., Pompach M., Hlinka J., Sadilek M., Murcinkova Z., Krpec P., Havlíček M., Madeja R., et al. Numerical Analysis of the Calcaneal Nail C-NAIL. Appl. Sci. 2022;12:5265. doi: 10.3390/app12105265. DOI
Ansys® Academic Research Mechanical, Release 2020R2. ANSYS, Inc.; Pittsburgh, PA, USA: 2020. Help System.
Zhang W., Yuan X., Chen C., Yang L. Finite element analysis of steel-wire ropes considering creep and analysis of influencing factors of creep. Eng. Struct. 2021;229:111665. doi: 10.1016/j.engstruct.2020.111665. DOI
Agabito F.D. Master’s Thesis. Politecnico di Torino; Torino, Italy: 2018. Flutter Analysis of Suspension Bridges in Ansys: The Akashi Kaikyo Bridge Case-Study.
Song B., Wang H., Cui W., Liu H., Yang T. Distributions of stress and deformation in a braided wire rope subjected to torsional loading. J. Strain Anal. Eng. Des. 2019;54:3–12. doi: 10.1177/0309324718800814. DOI
Zhang D., Feng C., Chen K., Wang D., Ni X. Effect of broken wire on bending fatigue characteristics of wire ropes. Int. J. Fatigue. 2017;103:456–465. doi: 10.1016/j.ijfatigue.2017.06.024. DOI
Chang X.-D., Peng Y.-X., Zhu Z.-C., Zou S.-Y., Gong X.-S., Xu C.-M. Effect of wear scar characteristics on the bearing capacity and fracture failure behavior of winding hoist wire rope. Tribol. Int. 2019;130:270–283.
Wang D., Zhang D., Wang S., Ge S. Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. Eng. Fail. Anal. 2013;27:173–193. doi: 10.1016/j.engfailanal.2012.08.014. DOI
Cruzado A., Leen S.B., Urchegui M.A., Gómez X. Finite element simulation of fretting wear and fatigue in thin steel wires. Int. J. Fatigue. 2013;55:7–21. doi: 10.1016/j.ijfatigue.2013.04.025. DOI
Xiang L., Wang H.Y., Chen Y., Guan Y.J., Dai L.H. Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads. Int. J. Solids Struct. 2017;129:103–118. doi: 10.1016/j.ijsolstr.2017.09.008. DOI