Study of Optimal Cam Design of Dual-Axle Spring-Loaded Camming Device

. 2021 Apr 13 ; 14 (8) : . [epub] 20210413

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33924484

The spring-loaded camming device (SLCD), also known as "friend", is a simple mechanism used to ensure the safety of the climber through fall prevention. SLCD consists of two pairs of opposing cams rotating separately, with one (single-axle SLCD) or two (dual-axle SLCD) pins connecting the opposing cams, a stem, connected to the pins, providing the attachment of the climbing rope, springs, which simultaneously push cams to a fully expanded position, and an operating element controlling the cam position. The expansion of cams is thus adaptable to allow insertion or removal of the device into/from a rock crack. While the pins, stem, operating element, and springs can be considered optimal, the (especially internal) shape of the cam allows space for improvement, especially where the weight is concerned. This paper focuses on optimizing the internal shape of the dual-axle SLCD cam from the perspective of the weight/stiffness trade-off. For this purpose, two computational models are designed and multi-step topology optimization (TOP) are performed. From the computational models' point of view, SLCD is considered symmetric and only one cam is optimized and smoothened using parametric curves. Finally, the load-bearing capacity of the new cam design is analyzed. This work is based on practical industry requirements, and the obtained results will be reflected in a new commercial design of SLCD.

Zobrazit více v PubMed

Legaszewski M. Introduction to Spring Loaded Camming Devices (SLCD’s) ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH NR 10—I LO; Gliwice, Poland: 2015.

Tusting P., Belcourt B., Skrivan J., Mellon D., Santurbane M., Narajowski D. Active Camming Device. US7278618B2. 2004 Dec 22;

Marsalek P., Frantisek O., Karasek T. Lever-Type Mechanical Stopper. CZ306178B6. 2014 Apr 24;

Zondlak P., Marsalek P., Karasek T. Modelling of holding power of lever-type mechanical stopper. AIP Conf. Proc. 2019;2116:320016. doi: 10.1063/1.5114338. DOI

Blatnický M., Sága M., Dižo J., Bruna M. Application of Light Metal Alloy EN AW 6063 to Vehicle Frame Construction with an Innovated Steering Mechanism. Materials. 2020;13:817. doi: 10.3390/ma13040817. PubMed DOI PMC

Frictional Anchors-Safety Requirements and Test Method. European Standard; Brussels, Belgium: 2014. Mountaineering Equipment. European Standard EN12276.

Kouba P. Climbing Equipments. [(accessed on 3 February 2021)]; Available online: https://koubaclimbing.cz/

Jardine R.D. Climbing Aids. US4184657A. 1977 Jun 4;

Christianson T. Mechanically Expanding Climbing Aid. US4643377A. 1985 Oct 26;

Handžić I., Reed K.B. Kinetic Shapes. J. Mech. Des. 2014;136 doi: 10.1115/1.4027168. PubMed DOI PMC

Rybansky D. Topological Optimization of Spring-Loaded Camming Device. VSB—Technicial University of Ostrava; Ostrava, Czech Republic: 2020.

Mechanical Characteristics AlCu4PbMg. [(accessed on 12 March 2020)]; Available online: https://www.euralliage.com/2030_english.htm.

Jozić S., Dumanić I., Bajić D. Experimental Analysis and Optimization of the Controllable Parameters in Turning of EN AW-2011 Alloy; Dry Machining and Alternative Cooling Techniques. Facta Univ. Ser. Mech. Eng. 2020;18:013–029. doi: 10.22190/FUME191024009J. DOI

Seitl S., Pokorny P., Miarka P., Klusák J., Kala Z., Kunz L. Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way. MATEC Web Conf. 2020;310:00034. doi: 10.1051/matecconf/202031000034. DOI

Javadi M., Tajdari M. Experimental investigation of the friction coefficient between aluminium and steel. Mater. Sci. Pol. 2006;24:305–310.

Rummel F., Alheid H.J., Frohn C. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding. Pure Appl. Geophys. 1978;116:743–764. doi: 10.1007/BF00876536. DOI

Bhatti M.A. Fundamental Finite Element Analysis and Applications. John Wiley; Hoboken, NJ, USA: 2005.

Bhatti M.A. Advanced Topics in Finite Element Analysis of Structures. 2nd ed. John Wiley; Hoboken, NJ, USA: 2006.

Kminek T., Maršálek P., Karasek T. Analysis of Steel Tanks for Water Storage Using Shell Elements. AIP Conf. Proc. 2019;2116:320007. doi: 10.1063/1.5114329. DOI

Horyl P., Šňupárek R., Maršálek P., Poruba Z., Pacześniowski K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montan. Slovaca. 2019;24:213–222.

Lesnak M., Maršálek P., Horyl P., Pistora J. Load-Bearing Capacity Modelling and Testing of Single-Stranded Wire Rope. Acta Montan. Slovaca. 2020;25:192–200. doi: 10.46544/AMS.v25i2.6. DOI

Bathe K.J. Finite Element Procedures. 1st ed. Prentice Hall; Englewood Cliffs, NJ, USA: 2006.

Klemenc M., Markopoulos A., Marsalek P. Analysing of critical force effects of aircraft seat belt using truss elements. AIP Conf. Proc. 2017;1863:340005.

Bendsøe M.P., Sigmund O. Topology Optimization. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2004. Corrected Printing ed.

Andreassen E., Clausen A., Schevenels M., Lazarov B., Sigmund O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011;43:1–16. doi: 10.1007/s00158-010-0594-7. DOI

Sotola M., Stareczek D., Rybansky D., Prokop J., Marsalek P. New Design Procedure of Transtibial ProsthesisBed Stump Using Topological Optimization Method. Symmetry. 2020;12:1837. doi: 10.3390/sym12111837. DOI

Jancar L., Pagac M., Mesicek J., Stefek P. Design Procedure of a Topologically Optimized Scooter Frame Part. Symmetry. 2020;12:755. doi: 10.3390/sym12050755. DOI

Bendsøe M., Sigmund O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999;69:635–654. doi: 10.1007/s004190050248. DOI

Koga J.I., Koga J., Homma S. Checkerboard Problem to Topology Optimization of Continuum Structures. 2013. Computational Engineering, Finance, and Science. Unpublished Work.

Sigmund O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007;33:401–424. doi: 10.1007/s00158-006-0087-x. DOI

Ohbuchi R., Masuda H., Aono M. A shape-preserving data embedding algorithm for NURBS curves and surfaces; Proceedings of the 1999 Proceedings Computer Graphics International; Canmore, AB, Canada. 7–11 June 1999; pp. 180–187. DOI

Piegl L., Tiller W. The Nurbs Book. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1997.

Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2021;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC

Marsalek P., Sotola M., Rybansky D., Repa V., Halama R., Fusek M., Prokop J. Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications. Materials. 2021;14:140. doi: 10.3390/ma14010140. PubMed DOI PMC

Maršálek P., Horyl P. Modelling of Bolted Connection with Flexible Yokes Used in Mining Industry. AIP Conf. Proc. 2017;1863:340008. doi: 10.1063/1.4992515. DOI

Čech R., Horyl P., Maršálek P. Modelling of Two-Seat Connection to the Frame of Rail Wagon in Terms of Resistance at Impact Test. Stroj. Cas. J. Mech. Eng. 2016;66:101–106. doi: 10.1515/scjme-2016-0024. DOI

Vaško M., Sága M., Majko J., Vaško A., Handrik M. Impact Toughness of FRTP Composites Produced by 3D Printing. Materials. 2020;13:5654. doi: 10.3390/ma13245654. PubMed DOI PMC

Markopoulos A., Hapla V., Cermak M., Fusek M. Massively parallel solution of elastoplasticity problems with tens of millions of unknowns using PermonCube and FLLOP packages. Appl. Math. Comput. 2015;267:698–710. doi: 10.1016/j.amc.2014.12.097. DOI

Costa G., Montemurro M., Pailhès J. NURBS hyper-surfaces for 3D topology optimization problems. Mech. Adv. Mater. Struct. 2019:1–20. doi: 10.1080/15376494.2019.1582826. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Design and Behavior of Lightweight Flexible Structure with Spatial Pattern Reducing Contact Surface Fraction

. 2023 Sep 26 ; 15 (19) : . [epub] 20230926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...