Study of Optimal Cam Design of Dual-Axle Spring-Loaded Camming Device
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33924484
PubMed Central
PMC8069224
DOI
10.3390/ma14081940
PII: ma14081940
Knihovny.cz E-zdroje
- Klíčová slova
- ANSYS, FEM, MATLAB, NURBS, SIMP, SLCD, cam, friend, topology optimization,
- Publikační typ
- časopisecké články MeSH
The spring-loaded camming device (SLCD), also known as "friend", is a simple mechanism used to ensure the safety of the climber through fall prevention. SLCD consists of two pairs of opposing cams rotating separately, with one (single-axle SLCD) or two (dual-axle SLCD) pins connecting the opposing cams, a stem, connected to the pins, providing the attachment of the climbing rope, springs, which simultaneously push cams to a fully expanded position, and an operating element controlling the cam position. The expansion of cams is thus adaptable to allow insertion or removal of the device into/from a rock crack. While the pins, stem, operating element, and springs can be considered optimal, the (especially internal) shape of the cam allows space for improvement, especially where the weight is concerned. This paper focuses on optimizing the internal shape of the dual-axle SLCD cam from the perspective of the weight/stiffness trade-off. For this purpose, two computational models are designed and multi-step topology optimization (TOP) are performed. From the computational models' point of view, SLCD is considered symmetric and only one cam is optimized and smoothened using parametric curves. Finally, the load-bearing capacity of the new cam design is analyzed. This work is based on practical industry requirements, and the obtained results will be reflected in a new commercial design of SLCD.
Zobrazit více v PubMed
Legaszewski M. Introduction to Spring Loaded Camming Devices (SLCD’s) ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH NR 10—I LO; Gliwice, Poland: 2015.
Tusting P., Belcourt B., Skrivan J., Mellon D., Santurbane M., Narajowski D. Active Camming Device. US7278618B2. 2004 Dec 22;
Marsalek P., Frantisek O., Karasek T. Lever-Type Mechanical Stopper. CZ306178B6. 2014 Apr 24;
Zondlak P., Marsalek P., Karasek T. Modelling of holding power of lever-type mechanical stopper. AIP Conf. Proc. 2019;2116:320016. doi: 10.1063/1.5114338. DOI
Blatnický M., Sága M., Dižo J., Bruna M. Application of Light Metal Alloy EN AW 6063 to Vehicle Frame Construction with an Innovated Steering Mechanism. Materials. 2020;13:817. doi: 10.3390/ma13040817. PubMed DOI PMC
Frictional Anchors-Safety Requirements and Test Method. European Standard; Brussels, Belgium: 2014. Mountaineering Equipment. European Standard EN12276.
Kouba P. Climbing Equipments. [(accessed on 3 February 2021)]; Available online: https://koubaclimbing.cz/
Jardine R.D. Climbing Aids. US4184657A. 1977 Jun 4;
Christianson T. Mechanically Expanding Climbing Aid. US4643377A. 1985 Oct 26;
Handžić I., Reed K.B. Kinetic Shapes. J. Mech. Des. 2014;136 doi: 10.1115/1.4027168. PubMed DOI PMC
Rybansky D. Topological Optimization of Spring-Loaded Camming Device. VSB—Technicial University of Ostrava; Ostrava, Czech Republic: 2020.
Mechanical Characteristics AlCu4PbMg. [(accessed on 12 March 2020)]; Available online: https://www.euralliage.com/2030_english.htm.
Jozić S., Dumanić I., Bajić D. Experimental Analysis and Optimization of the Controllable Parameters in Turning of EN AW-2011 Alloy; Dry Machining and Alternative Cooling Techniques. Facta Univ. Ser. Mech. Eng. 2020;18:013–029. doi: 10.22190/FUME191024009J. DOI
Seitl S., Pokorny P., Miarka P., Klusák J., Kala Z., Kunz L. Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way. MATEC Web Conf. 2020;310:00034. doi: 10.1051/matecconf/202031000034. DOI
Javadi M., Tajdari M. Experimental investigation of the friction coefficient between aluminium and steel. Mater. Sci. Pol. 2006;24:305–310.
Rummel F., Alheid H.J., Frohn C. Dilatancy and fracture induced velocity changes in rock and their relation to frictional sliding. Pure Appl. Geophys. 1978;116:743–764. doi: 10.1007/BF00876536. DOI
Bhatti M.A. Fundamental Finite Element Analysis and Applications. John Wiley; Hoboken, NJ, USA: 2005.
Bhatti M.A. Advanced Topics in Finite Element Analysis of Structures. 2nd ed. John Wiley; Hoboken, NJ, USA: 2006.
Kminek T., Maršálek P., Karasek T. Analysis of Steel Tanks for Water Storage Using Shell Elements. AIP Conf. Proc. 2019;2116:320007. doi: 10.1063/1.5114329. DOI
Horyl P., Šňupárek R., Maršálek P., Poruba Z., Pacześniowski K. Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montan. Slovaca. 2019;24:213–222.
Lesnak M., Maršálek P., Horyl P., Pistora J. Load-Bearing Capacity Modelling and Testing of Single-Stranded Wire Rope. Acta Montan. Slovaca. 2020;25:192–200. doi: 10.46544/AMS.v25i2.6. DOI
Bathe K.J. Finite Element Procedures. 1st ed. Prentice Hall; Englewood Cliffs, NJ, USA: 2006.
Klemenc M., Markopoulos A., Marsalek P. Analysing of critical force effects of aircraft seat belt using truss elements. AIP Conf. Proc. 2017;1863:340005.
Bendsøe M.P., Sigmund O. Topology Optimization. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2004. Corrected Printing ed.
Andreassen E., Clausen A., Schevenels M., Lazarov B., Sigmund O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011;43:1–16. doi: 10.1007/s00158-010-0594-7. DOI
Sotola M., Stareczek D., Rybansky D., Prokop J., Marsalek P. New Design Procedure of Transtibial ProsthesisBed Stump Using Topological Optimization Method. Symmetry. 2020;12:1837. doi: 10.3390/sym12111837. DOI
Jancar L., Pagac M., Mesicek J., Stefek P. Design Procedure of a Topologically Optimized Scooter Frame Part. Symmetry. 2020;12:755. doi: 10.3390/sym12050755. DOI
Bendsøe M., Sigmund O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999;69:635–654. doi: 10.1007/s004190050248. DOI
Koga J.I., Koga J., Homma S. Checkerboard Problem to Topology Optimization of Continuum Structures. 2013. Computational Engineering, Finance, and Science. Unpublished Work.
Sigmund O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007;33:401–424. doi: 10.1007/s00158-006-0087-x. DOI
Ohbuchi R., Masuda H., Aono M. A shape-preserving data embedding algorithm for NURBS curves and surfaces; Proceedings of the 1999 Proceedings Computer Graphics International; Canmore, AB, Canada. 7–11 June 1999; pp. 180–187. DOI
Piegl L., Tiller W. The Nurbs Book. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1997.
Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2021;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC
Marsalek P., Sotola M., Rybansky D., Repa V., Halama R., Fusek M., Prokop J. Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications. Materials. 2021;14:140. doi: 10.3390/ma14010140. PubMed DOI PMC
Maršálek P., Horyl P. Modelling of Bolted Connection with Flexible Yokes Used in Mining Industry. AIP Conf. Proc. 2017;1863:340008. doi: 10.1063/1.4992515. DOI
Čech R., Horyl P., Maršálek P. Modelling of Two-Seat Connection to the Frame of Rail Wagon in Terms of Resistance at Impact Test. Stroj. Cas. J. Mech. Eng. 2016;66:101–106. doi: 10.1515/scjme-2016-0024. DOI
Vaško M., Sága M., Majko J., Vaško A., Handrik M. Impact Toughness of FRTP Composites Produced by 3D Printing. Materials. 2020;13:5654. doi: 10.3390/ma13245654. PubMed DOI PMC
Markopoulos A., Hapla V., Cermak M., Fusek M. Massively parallel solution of elastoplasticity problems with tens of millions of unknowns using PermonCube and FLLOP packages. Appl. Math. Comput. 2015;267:698–710. doi: 10.1016/j.amc.2014.12.097. DOI
Costa G., Montemurro M., Pailhès J. NURBS hyper-surfaces for 3D topology optimization problems. Mech. Adv. Mater. Struct. 2019:1–20. doi: 10.1080/15376494.2019.1582826. DOI