Effect of Water-Induced and Physical Aging on Mechanical Properties of 3D Printed Elastomeric Polyurethane
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/000840
European Union Structural funds
PubMed
36559865
PubMed Central
PMC9783526
DOI
10.3390/polym14245496
PII: polym14245496
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical properties, physical aging, polyurethane, water aging,
- Publikační typ
- časopisecké články MeSH
In this study, the effect of moisture on the elastic and failure properties of elastomeric polyurethane (EPU 40) 3D printed via Vat Photopolymerization was investigated. EPU 40 samples were printed, and uniaxial tensile tests were performed on Dry-fresh, Dry-aged (eight months aged), and after various times of being immersed in water (0−8 months). Elastic response, initial stiffness, failure strength, and failure elongation were analyzed. Besides, gravimetric analysis was performed to determine the increase in weight and thickness after water immersion. The elastic response was fitted by the Arruda-Boyce constitutive model. Results show that initial stiffness decreased after immersion (mean 6.8 MPa dry vs. 6.3 MPa immersed p-value 0.002). Contrary, the initial stiffness increased due to physical aging under a dry state from a mean 6.3 MPa to 6.9 MPa (p = 0.006). The same effect was observed for stiffness parameter G of the constitutive model, while the limit stretch parameter λL was not affected by either aging. The 95% confidence intervals for strength and failure stretch were 5.27−9.48 MPa and 2.18−2.86, respectively, and were not affected either by immersion time or by physical aging. The median diffusion coefficient was 3.8·10−12 m^2/s. The immersion time has a significant effect only on stiffness, while oxidative aging has an inverse effect on the mechanical properties compared to water immersion. The transition process is completed within 24 h after immersion.
Zobrazit více v PubMed
DeSimone J., Ermoshkin A., Ermoshkin N., Samulski E. Continous Liquid Interphase Printing. PCT/US2014/015506. U.S. Patent. 2014 August 21;
Hossain M., Liao Z. An additively manufactured silicone polymer: Thermo-viscoelastic experimental study and computational modelling. Addit. Manuf. 2020;35:101395. doi: 10.1016/j.addma.2020.101395. DOI
Hossain M., Navaratne R., Perić D. 3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions. Int. J. Non-Linear Mech. 2020;126:103546. doi: 10.1016/j.ijnonlinmec.2020.103546. DOI
Christ J.F., Aliheidari N., Ameli A., Pötschke P. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 2017;131:394–401. doi: 10.1016/j.matdes.2017.06.011. DOI
Tan C., Dong Z., Li Y., Zhao H., Huang X., Zhou Z., Jiang J.W., Long Y.Z., Jiang P., Zhang T.Y., et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 2020;11:3530. doi: 10.1038/s41467-020-17301-6. PubMed DOI PMC
Kang Y.K., Park C.H., Chang H., Minn K., Park C.Y. Development of thermoplastic polyurethane vascular prostheses. J. Appl. Polym. Sci. 2008;110:3267–3274. doi: 10.1002/app.28800. DOI
Jung S.Y., Lee S.J., Kim H.Y., Park H.S., Wang Z., Kim H.J., Yoo J.J., Chung S.M., Kim H.S. 3D printed polyurethane prosthesis for partial tracheal reconstruction: A pilot animal study. Biofabrication. 2016;8:045015. doi: 10.1088/1758-5090/8/4/045015. PubMed DOI
Huang J.J., Ren J.A., Wang G.F., Li Z.A., Wu X.W., Ren H.J., Liu S. 3D-printed “fistula stent” designed for management of enterocutaneous fistula: An advanced strategy. World J. Gastroenterol. 2017;23:7489–7494. doi: 10.3748/wjg.v23.i41.7489. PubMed DOI PMC
Bates S.R.G., Farrow I.R., Trask R.S. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Mater. Des. 2019;162:130–142. doi: 10.1016/j.matdes.2018.11.019. DOI
Muflikhun M.A., Sentanu D.A. Characteristics and performance of carabiner remodeling using 3D printing with graded filler and different orientation methods. Eng. Fail. Anal. 2021;130:105795. doi: 10.1016/j.engfailanal.2021.105795. DOI
Vermette P., Griesser H.J., Laroche G., Guidoin R. Biomedical Applications of Polyurethanes, n.d. Routledge; New York, NY, USA: 2021.
Garces I.T., Aslanzadeh S., Boluk Y., Ayranci C. Effect of Moisture on Shape Memory Polyurethane Polymers for Extrusion-Based Additive Manufacturing. Materials. 2019;12:244. doi: 10.3390/ma12020244. PubMed DOI PMC
Yu K., Ritchie A., Mao Y., Dunn M.L., Qi H.J. Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials. Procedia IUTAM. 2015;12:193–203. doi: 10.1016/j.piutam.2014.12.021. DOI
Mao Y., Yu K., Isakov M.S., Wu J., Dunn M.L., Qi H.J. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers. Sci. Rep. 2015;5:13616. doi: 10.1038/srep13616. PubMed DOI PMC
Banjo A.D., Agrawal V., Auad M.L., Celestine A.-D.N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access. 2022;7:100243. doi: 10.1016/j.jcomc.2022.100243. DOI
Aglan H., Calhoun M., Allie L. Effect of UV and hygrothermal aging on the mechanical performance of polyurethane elastomers. J. Appl. Polym. Sci. 2008;108:558–564. doi: 10.1002/app.27049. DOI
Xie F., Zhang T., Bryant P., Kurusingal V., Colwell J.M., Laycock B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019;90:211–268. doi: 10.1016/j.progpolymsci.2018.12.003. DOI
Stevenson J.S., Kusy R.P. Structural degradation of polyurethane-based elastomeric modules. J. Mater. Sci. Mater. Electron. 1995;6:377–384. doi: 10.1007/BF00120277. DOI
Boubakri A., Haddar N., Elleuch K., Bienvenu Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater. Des. 2010;31:4194–4201. doi: 10.1016/j.matdes.2010.04.023. DOI
Boubakri A., Elleuch K., Guermazi N., Ayedi H.F. Investigations on hygrothermal aging of thermoplastic polyurethane material. Mater. Des. 2009;30:3958–3965. doi: 10.1016/j.matdes.2009.05.038. DOI
Pretsch T., Jakob I., Müller W. Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane) Polym. Degrad. Stab. 2009;94:61–73. doi: 10.1016/j.polymdegradstab.2008.10.012. DOI
Celina M.C. Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym. Degrad. Stab. 2013;98:2419–2429. doi: 10.1016/j.polymdegradstab.2013.06.024. DOI
Qi H.J., Boyce M.C. Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005;37:817–839. doi: 10.1016/j.mechmat.2004.08.001. DOI
DLS 3D Printing Technology|Carbon, (n.d.) [(accessed on 13 January 2022)]. Available online: https://www.carbon3d.com/carbon-dls-technology/
Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC
Velankar S., Pazos J., Cooper S.L. High-performance UV-curable urethane acrylates via deblocking chemistry. J. Appl. Polym. Sci. 1996;62:1361–1376. doi: 10.1002/(SICI)1097-4628(19961128)62:9<1361::AID-APP6>3.0.CO;2-F. DOI
EPU 40—Elastomeric Polyurethane Resin for Carbon 3D Printers, (n.d.) [(accessed on 13 January 2022)]. Available online: https://www.carbon3d.com/materials/epu-40/
Herzberger J., Sirrine J.M., Williams C.B., Long T.E. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog. Polym. Sci. 2019;97:101144. doi: 10.1016/j.progpolymsci.2019.101144. DOI
Rolland J., Chen K., Poelma J., Goodrich J., Pinschmidt R., DeSimone J., Robeson L. US9453142B2—Polyurethane Resins Having Multiple Mechanisms of Hardening for Use in Producing Three-Dimensional Objects. 2016. [(accessed on 4 July 2022)]. Available online: https://patents.google.com/patent/US9453142B2/en.
Lee J.Y., An J., Chua C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today. 2017;7:120–133. doi: 10.1016/j.apmt.2017.02.004. DOI
Pagac M., Schwarz D., Petru J., Polzer S. 3D printed polyurethane exhibits isotropic elastic behavior despite its anisotropic surface. Rapid Prototyp. J. 2020;26:1371–1378. doi: 10.1108/RPJ-02-2019-0027. DOI
Arruda E.M., Boyce M.C. A three-dimensional constitutive model for large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 1993;41:389–412. doi: 10.1016/0022-5096(93)90013-6. DOI
Steinmann P., Hossain M., Possart G. Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 2012;82:1183–1217. doi: 10.1007/s00419-012-0610-z. DOI
Hackett R.M. Hyperelasticity Primer. 2nd ed. Springer International Publishing; Berlin/Heidelberg, Germany: 2018. pp. 1–186.
Wan Y.Z., Wang Y.L., Huang Y., He B.M., Han K.Y. Hygrothermal aging behaviour of VARTMed three-dimensional braided carbon-epoxy composites under external stresses. Compos. Part A Appl. Sci. Manuf. 2005;36:1102–1109. doi: 10.1016/j.compositesa.2005.01.003. DOI
Kanyanta V., Ivankovic A. Mechanical characterisation of polyurethane elastomer for biomedical applications. J. Mech. Behav. Biomed. Mater. 2010;3:51–62. doi: 10.1016/j.jmbbm.2009.03.005. PubMed DOI
Bhargava S., Kubota M., Lewis R.D., Advani S.G., Prasad A.K., Deitzel J.M. Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating. Prog. Org. Coat. 2015;79:75–82. doi: 10.1016/j.porgcoat.2014.11.005. DOI
Slater C., Davis C., Strangwood M. Compression set of thermoplastic polyurethane under different thermal-mechanical-moisture conditions. Polym. Degrad. Stab. 2011;96:2139–2144. doi: 10.1016/j.polymdegradstab.2011.09.012. DOI