Effect of Water-Induced and Physical Aging on Mechanical Properties of 3D Printed Elastomeric Polyurethane

. 2022 Dec 15 ; 14 (24) : . [epub] 20221215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559865

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/000840 European Union Structural funds

In this study, the effect of moisture on the elastic and failure properties of elastomeric polyurethane (EPU 40) 3D printed via Vat Photopolymerization was investigated. EPU 40 samples were printed, and uniaxial tensile tests were performed on Dry-fresh, Dry-aged (eight months aged), and after various times of being immersed in water (0−8 months). Elastic response, initial stiffness, failure strength, and failure elongation were analyzed. Besides, gravimetric analysis was performed to determine the increase in weight and thickness after water immersion. The elastic response was fitted by the Arruda-Boyce constitutive model. Results show that initial stiffness decreased after immersion (mean 6.8 MPa dry vs. 6.3 MPa immersed p-value 0.002). Contrary, the initial stiffness increased due to physical aging under a dry state from a mean 6.3 MPa to 6.9 MPa (p = 0.006). The same effect was observed for stiffness parameter G of the constitutive model, while the limit stretch parameter λL was not affected by either aging. The 95% confidence intervals for strength and failure stretch were 5.27−9.48 MPa and 2.18−2.86, respectively, and were not affected either by immersion time or by physical aging. The median diffusion coefficient was 3.8·10−12 m^2/s. The immersion time has a significant effect only on stiffness, while oxidative aging has an inverse effect on the mechanical properties compared to water immersion. The transition process is completed within 24 h after immersion.

Zobrazit více v PubMed

DeSimone J., Ermoshkin A., Ermoshkin N., Samulski E. Continous Liquid Interphase Printing. PCT/US2014/015506. U.S. Patent. 2014 August 21;

Hossain M., Liao Z. An additively manufactured silicone polymer: Thermo-viscoelastic experimental study and computational modelling. Addit. Manuf. 2020;35:101395. doi: 10.1016/j.addma.2020.101395. DOI

Hossain M., Navaratne R., Perić D. 3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions. Int. J. Non-Linear Mech. 2020;126:103546. doi: 10.1016/j.ijnonlinmec.2020.103546. DOI

Christ J.F., Aliheidari N., Ameli A., Pötschke P. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 2017;131:394–401. doi: 10.1016/j.matdes.2017.06.011. DOI

Tan C., Dong Z., Li Y., Zhao H., Huang X., Zhou Z., Jiang J.W., Long Y.Z., Jiang P., Zhang T.Y., et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 2020;11:3530. doi: 10.1038/s41467-020-17301-6. PubMed DOI PMC

Kang Y.K., Park C.H., Chang H., Minn K., Park C.Y. Development of thermoplastic polyurethane vascular prostheses. J. Appl. Polym. Sci. 2008;110:3267–3274. doi: 10.1002/app.28800. DOI

Jung S.Y., Lee S.J., Kim H.Y., Park H.S., Wang Z., Kim H.J., Yoo J.J., Chung S.M., Kim H.S. 3D printed polyurethane prosthesis for partial tracheal reconstruction: A pilot animal study. Biofabrication. 2016;8:045015. doi: 10.1088/1758-5090/8/4/045015. PubMed DOI

Huang J.J., Ren J.A., Wang G.F., Li Z.A., Wu X.W., Ren H.J., Liu S. 3D-printed “fistula stent” designed for management of enterocutaneous fistula: An advanced strategy. World J. Gastroenterol. 2017;23:7489–7494. doi: 10.3748/wjg.v23.i41.7489. PubMed DOI PMC

Bates S.R.G., Farrow I.R., Trask R.S. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Mater. Des. 2019;162:130–142. doi: 10.1016/j.matdes.2018.11.019. DOI

Muflikhun M.A., Sentanu D.A. Characteristics and performance of carabiner remodeling using 3D printing with graded filler and different orientation methods. Eng. Fail. Anal. 2021;130:105795. doi: 10.1016/j.engfailanal.2021.105795. DOI

Vermette P., Griesser H.J., Laroche G., Guidoin R. Biomedical Applications of Polyurethanes, n.d. Routledge; New York, NY, USA: 2021.

Garces I.T., Aslanzadeh S., Boluk Y., Ayranci C. Effect of Moisture on Shape Memory Polyurethane Polymers for Extrusion-Based Additive Manufacturing. Materials. 2019;12:244. doi: 10.3390/ma12020244. PubMed DOI PMC

Yu K., Ritchie A., Mao Y., Dunn M.L., Qi H.J. Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials. Procedia IUTAM. 2015;12:193–203. doi: 10.1016/j.piutam.2014.12.021. DOI

Mao Y., Yu K., Isakov M.S., Wu J., Dunn M.L., Qi H.J. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers. Sci. Rep. 2015;5:13616. doi: 10.1038/srep13616. PubMed DOI PMC

Banjo A.D., Agrawal V., Auad M.L., Celestine A.-D.N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access. 2022;7:100243. doi: 10.1016/j.jcomc.2022.100243. DOI

Aglan H., Calhoun M., Allie L. Effect of UV and hygrothermal aging on the mechanical performance of polyurethane elastomers. J. Appl. Polym. Sci. 2008;108:558–564. doi: 10.1002/app.27049. DOI

Xie F., Zhang T., Bryant P., Kurusingal V., Colwell J.M., Laycock B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019;90:211–268. doi: 10.1016/j.progpolymsci.2018.12.003. DOI

Stevenson J.S., Kusy R.P. Structural degradation of polyurethane-based elastomeric modules. J. Mater. Sci. Mater. Electron. 1995;6:377–384. doi: 10.1007/BF00120277. DOI

Boubakri A., Haddar N., Elleuch K., Bienvenu Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater. Des. 2010;31:4194–4201. doi: 10.1016/j.matdes.2010.04.023. DOI

Boubakri A., Elleuch K., Guermazi N., Ayedi H.F. Investigations on hygrothermal aging of thermoplastic polyurethane material. Mater. Des. 2009;30:3958–3965. doi: 10.1016/j.matdes.2009.05.038. DOI

Pretsch T., Jakob I., Müller W. Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane) Polym. Degrad. Stab. 2009;94:61–73. doi: 10.1016/j.polymdegradstab.2008.10.012. DOI

Celina M.C. Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym. Degrad. Stab. 2013;98:2419–2429. doi: 10.1016/j.polymdegradstab.2013.06.024. DOI

Qi H.J., Boyce M.C. Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005;37:817–839. doi: 10.1016/j.mechmat.2004.08.001. DOI

DLS 3D Printing Technology|Carbon, (n.d.) [(accessed on 13 January 2022)]. Available online: https://www.carbon3d.com/carbon-dls-technology/

Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC

Velankar S., Pazos J., Cooper S.L. High-performance UV-curable urethane acrylates via deblocking chemistry. J. Appl. Polym. Sci. 1996;62:1361–1376. doi: 10.1002/(SICI)1097-4628(19961128)62:9<1361::AID-APP6>3.0.CO;2-F. DOI

EPU 40—Elastomeric Polyurethane Resin for Carbon 3D Printers, (n.d.) [(accessed on 13 January 2022)]. Available online: https://www.carbon3d.com/materials/epu-40/

Herzberger J., Sirrine J.M., Williams C.B., Long T.E. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog. Polym. Sci. 2019;97:101144. doi: 10.1016/j.progpolymsci.2019.101144. DOI

Rolland J., Chen K., Poelma J., Goodrich J., Pinschmidt R., DeSimone J., Robeson L. US9453142B2—Polyurethane Resins Having Multiple Mechanisms of Hardening for Use in Producing Three-Dimensional Objects. 2016. [(accessed on 4 July 2022)]. Available online: https://patents.google.com/patent/US9453142B2/en.

Lee J.Y., An J., Chua C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today. 2017;7:120–133. doi: 10.1016/j.apmt.2017.02.004. DOI

Pagac M., Schwarz D., Petru J., Polzer S. 3D printed polyurethane exhibits isotropic elastic behavior despite its anisotropic surface. Rapid Prototyp. J. 2020;26:1371–1378. doi: 10.1108/RPJ-02-2019-0027. DOI

Arruda E.M., Boyce M.C. A three-dimensional constitutive model for large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 1993;41:389–412. doi: 10.1016/0022-5096(93)90013-6. DOI

Steinmann P., Hossain M., Possart G. Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 2012;82:1183–1217. doi: 10.1007/s00419-012-0610-z. DOI

Hackett R.M. Hyperelasticity Primer. 2nd ed. Springer International Publishing; Berlin/Heidelberg, Germany: 2018. pp. 1–186.

Wan Y.Z., Wang Y.L., Huang Y., He B.M., Han K.Y. Hygrothermal aging behaviour of VARTMed three-dimensional braided carbon-epoxy composites under external stresses. Compos. Part A Appl. Sci. Manuf. 2005;36:1102–1109. doi: 10.1016/j.compositesa.2005.01.003. DOI

Kanyanta V., Ivankovic A. Mechanical characterisation of polyurethane elastomer for biomedical applications. J. Mech. Behav. Biomed. Mater. 2010;3:51–62. doi: 10.1016/j.jmbbm.2009.03.005. PubMed DOI

Bhargava S., Kubota M., Lewis R.D., Advani S.G., Prasad A.K., Deitzel J.M. Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating. Prog. Org. Coat. 2015;79:75–82. doi: 10.1016/j.porgcoat.2014.11.005. DOI

Slater C., Davis C., Strangwood M. Compression set of thermoplastic polyurethane under different thermal-mechanical-moisture conditions. Polym. Degrad. Stab. 2011;96:2139–2144. doi: 10.1016/j.polymdegradstab.2011.09.012. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...