Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
31281325
PubMed Central
PMC6596448
DOI
10.3389/fpls.2019.00774
Knihovny.cz E-resources
- Keywords
- Arabidopsis thaliana, NSE4 δ-kleisin, SMC5/6 complex, meiosis, mitosis, nucleus, phylogeny, super-resolution microscopy,
- Publication type
- Journal Article MeSH
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
See more in PubMed
Alexander M. P. (1969). Differential staining of aborted and nonaborted pollen. PubMed DOI
Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., et al. (2003). Genome-wide insertional mutagenesis of PubMed DOI
Alt A., Dang H. Q., Wells O. S., Polo L. M., Smith M. A., McGregor G. A., et al. (2017). Specialized interfaces of Smc5/6 control hinge stability and DNA association. PubMed DOI PMC
Ambrosino L., Bostan H., di Salle P., Sangiovanni M., Vigilante A., Chiusano M. L. (2016). pATsi: Paralogs and Singleton Genes from PubMed DOI PMC
Armstrong S., Osman K. (2013). Immunolocalization of meiotic proteins in PubMed DOI
Båvner A., Matthews J., Sanyal S., Gustafsson J. A., Treuter E. (2005). EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. PubMed DOI PMC
Bermúdez-López M., Aragon L. (2017). Smc5/6 complex regulates Sgs1 recombination functions. PubMed DOI PMC
Bermúdez-López M., Ceschia A., de Piccoli G., Colomina N., Pasero P., Aragon L., et al. (2010). The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. PubMed DOI PMC
Bermudez-Lopez M., Villoria M. T., Esteras M., Jarmuz A., Torres-Rosell J., Clemente-Blanco A., et al. (2016). Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. PubMed DOI PMC
Bickel J. S., Chen L., Hayward J., Yeap S. L., Alkers A. E., Chan R. C. (2010). Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PubMed DOI PMC
Blanc G., Hokamp K., Wolfe K. H. (2003). A recent polyploidy superimposed on older large-scale duplications in the PubMed DOI PMC
Blanc G., Wolfe K. H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. PubMed DOI PMC
Bowers J. E., Chapman B. A., Rong J., Paterson A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. PubMed DOI
Carter S. D., Sjögren C. (2012). The SMC complexes, DNA and chromosome topology: right or knot? PubMed DOI
Chan R. C., Severson A. F., Meyer B. J. (2004). Condensin restructures chromosomes in preparation for meiotic divisions. PubMed DOI PMC
Chan Y. W., Fugger K., West S. C. (2018). Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. PubMed DOI PMC
Chapman B. A., Bowers J. E., Feltus F. A., Paterson A. H. (2006). Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. PubMed DOI PMC
Chavez A., George V., Agrawal V., Johnson F. B. (2010). Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. PubMed DOI PMC
Chelysheva L., Vezon D., Chambon A., Gendrot G., Pereira L., Lemhemdi A., et al. (2012). The PubMed DOI PMC
Chiolo I., Minoda A., Colmenares S. U., Polyzos A., Costes S. V., Karpen G. H. (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for PubMed DOI
Coghlan A., Eichler E. E., Oliver S. G., Paterson A. H., Stein L. (2005). Chromosome evolution in eukaryotes: a multi-kingdom perspective. PubMed DOI
Conrad U., Fiedler U., Artsaenko O., Phillips J. (1997). “Recombinmant proteins from plantas: production and isolation of clinically useful compounds”,” in DOI
Conrad U., Plagmann I., Malchow S., Sack M., Floss D. M., Kruglov A. A., et al. (2011). ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. PubMed DOI
Copsey A., Tang S., Jordan P. W., Blitzblau H. G., Newcombe S., Chan A. C., et al. (2013). Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PubMed DOI PMC
Cuylen S., Haering C. H. (2011). Deciphering condensin action during chromosome segregation. PubMed DOI
Czechowski T., Stitt M., Altmann T., Udvardi M. K., Scheible W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in PubMed DOI PMC
De Piccoli G., Cortes-Ledesma F., Ira G., Torres-Rosell J., Uhle S., Farmer S., et al. (2006). Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. PubMed DOI PMC
De Piccoli G., Torres-Rosell J., Aragon L. (2009). The unnamed complex: what do we know about Smc5-Smc6? PubMed DOI
Diaz M., Pecinka A. (2018). Scaffolding for repair: understanding molecular functions of the SMC5/6 complex. PubMed DOI PMC
Diaz M., Pecinkova P., Nowicka A., Baroux C., Sakamoto T., Gandha P. Y., et al. (2019). SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development in PubMed DOI PMC
Duan X., Yang Y., Chen Y. H., Arenz J., Rangi G. K., Zhao X., et al. (2009). Architecture of the Smc5/6 Complex of PubMed DOI PMC
Farmer S., San-Segundo P. A., Aragon L. (2011). The Smc5-Smc6 complex is required to remove chromosome junctions in meiosis. PubMed DOI PMC
Feder M. E. (2007). Evolvability of physiological and biochemical traits: evolutionary mechanisms including and beyond single-nucleotide mutation. PubMed DOI
Fernandez-Capetillo O. (2016). The (elusive) role of the SMC5/6 complex. PubMed DOI PMC
Force A., Cresko W. A., Pickett F. B., Proulx S. R., Amemiya C., Lynch M. (2005). The origin of subfunctions and modular gene regulation. PubMed DOI PMC
Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. PubMed PMC
Fousteri M. I., Lehmann A. R. (2000). A novel SMC protein complex in PubMed DOI PMC
Gallego-Paez L. M., Tanaka H., Bando M., Takahashi M., Nozaki N., Nakato R., et al. (2014). Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. PubMed DOI PMC
Gomez R., Jordan P. W., Viera A., Alsheimer M., Fukuda T., Jessberger R., et al. (2013). Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. PubMed DOI PMC
Guerineau M., Kriz Z., Kozakova L., Bednarova K., Janos P., Palecek J. (2012). Analysis of the Nse3/MAGE-binding domain of the Nse4/EID family proteins. PubMed DOI PMC
Haering C. H., Gruber S. (2016a). SnapShot: SMC Protein Complexes Part I. PubMed DOI
Haering C. H., Gruber S. (2016b). SnapShot: SMC Protein Complexes Part II. PubMed DOI
Hanin M., Mengiste T., Bogucki A., Paszkowski J. (2000). Elevated levels of intrachromosomal homologous recombination in PubMed DOI
Hassler M., Shaltiel I. A., Haering C. H. (2018). Towards a unified model of SMC complex function. PubMed DOI PMC
Hazbun T. R., Malmstrom L., Anderson S., Graczyk B. J., Fox B., Riffle M., et al. (2003). Assigning function to yeast proteins by integration of technologies. PubMed DOI
Hesse S., Zelkowski M., Mikhailova E., Keijzer K., Houben A., Schubert V. (2019). Ultrastructure, and dynamics of synaptonemal complex components during meiotic pairing and synapsis of standard (A) and accessory (B) rye chromosomes. PubMed DOI PMC
Higgins J. D., Armstrong S. J., Franklin F. C., Jones G. H. (2004). The PubMed DOI PMC
Higgins J. D., Sanchez-Moran E., Armstrong S. J., Jones G. H., Franklin F. C. (2005). The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. PubMed DOI PMC
Hirano T. (2006). At the heart of the chromosome: SMC proteins in action. PubMed DOI
Hong Y., Sonneville R., Agostinho A., Meier B., Wang B., Blow J. J., et al. (2016). The SMC-5/6 complex and the HIM-6 (BLM) helicase synergistically promote meiotic recombination intermediate processing and chromosome maturation during PubMed DOI PMC
Houlard M., Godwin J., Metson J., Lee J., Hirano T., Nasmyth K. (2015). Condensin confers the longitudinal rigidity of chromosomes. PubMed DOI PMC
Hu B., Liao C., Millson S. H., Mollapour M., Prodromou C., Pearl L. H., et al. (2005). Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. PubMed DOI
Huang L., Yang S., Zhang S., Liu M., Lai J., Qi Y., et al. (2009). The PubMed DOI
Hudson J. J. R., Bednarova K., Kozakova L., Liao C. Y., Guerineau M., Colnaghi R., et al. (2011). Interactions between the Nse3 and Nse4 components of the SMC5-6 Complex identify evolutionarily conserved interactions between MAGE and EID families. PubMed DOI PMC
Hurles M. (2004). Gene duplication: the genomic trade in spare parts. PubMed DOI PMC
Hwang G., Sun F., O’Brien M., Eppig J. J., Handel M. A., Jordan P. W. (2017). SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. PubMed DOI PMC
Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. PubMed DOI PMC
Innan H., Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. PubMed DOI
Irmisch A., Ampatzidou E., Mizuno K., O’Connell M. J., Murray J. M. (2009). Smc5/6 maintains stalled replication forks in a recombination-competent conformation. PubMed DOI PMC
Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., et al. (2009). SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in PubMed DOI PMC
Ishida T., Yoshimura M., Miura K., Sugimoto K. (2012). MMS21/HPY2 and SIZ1, two PubMed DOI PMC
Jeppsson K., Carlborg K. K., Nakato R., Berta D. G., Lilienthal I., Kanno T., et al. (2014a). The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PubMed DOI PMC
Jeppsson K., Kanno T., Shirahige K., Sjogren C. (2014b). The maintenance of chromosome structure: positioning and functioning of SMC complexes. PubMed DOI
Jessop L., Rockmill B., Roeder G. S., Lichten M. (2006). Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PubMed DOI PMC
Kakui Y., Uhlmann F. (2018). SMC complexes orchestrate the mitotic chromatin interaction landscape. PubMed DOI PMC
Kanno T., Berta D. G., Sjogren C. (2015). The Smc5/6 Complex Is an ATP-dependent intermolecular DNA linker. PubMed DOI
Kawabe A., Nasuda S. (2005). Structure and genomic organization of centromeric repeats in PubMed DOI
Kegel A., Betts-Lindroos H., Kanno T., Jeppsson K., Strom L., Katou Y., et al. (2011). Chromosome length influences replication-induced topological stress. PubMed DOI
Kinoshita K., Hirano T. (2017). Dynamic organization of mitotic chromosomes. PubMed DOI
Knoll A., Schröpfer S., Puchta H. (2014). The RTR complex as caretaker of genome stability and its unique meiotic function in plants. PubMed DOI PMC
Kozakova L., Vondrova L., Stejskal K., Charalabous P., Kolesar P., Lehmann A. R., et al. (2015). The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. PubMed DOI PMC
Kschonsak M., Merkel F., Bisht S., Metz J., Rybin V., Hassler M., et al. (2017). Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. PubMed DOI PMC
Ku H. M., Vision T., Liu J., Tanksley S. D. (2000). Comparing sequenced segments of the tomato and PubMed DOI PMC
Laflamme G., Tremblay-Boudreault T., Roy M. A., Andersen P., Bonneil E., Atchia K., et al. (2014). Structural maintenance of chromosome (SMC) proteins link microtubule stability to genome integrity. PubMed DOI PMC
Lehmann A. R. (2005). The role of SMC proteins in the responses to DNA damage. PubMed DOI
Li B., Carey M., Workman J. L. (2007). The role of chromatin during transcription. PubMed DOI
Li G., Zou W., Jian L., Qian J., Deng Y., Zhao J. (2017). Non-SMC elements 1 and 3 are required for early embryo and seedling development in PubMed DOI PMC
Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. PubMed DOI PMC
Lilienthal I., Kanno T., Sjögren C. (2013). Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PubMed DOI PMC
Lindroos H. B., Ström L., Itoh T., Katou Y., Shirahige K., Sjögren C. (2006). Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. PubMed DOI
Lynch M., Conery J. S. (2000). The evolutionary fate and consequences of duplicate genes. PubMed DOI
Maeshima K., Laemmli U. K. (2003). A two-step scaffolding model for mitotic chromosome assembly. PubMed DOI
Magadum S., Banerjee U., Murugan P., Gangapur D., Ravikesavan R. (2013). Gene duplication as a major force in evolution. PubMed DOI
Martinez-Zapater J. M., Estelle M. A., Somerville C. R. (1986). A highly repeated DNA sequence in DOI
Mengiste T., Revenkova E., Bechtold N., Paszkowski J. (1999). An SMC-like protein is required for efficient homologous recombination in PubMed DOI PMC
Mukhopadhyay D., Dasso M. (2017). The SUMO pathway in mitosis. PubMed DOI PMC
Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., et al. (2010). Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. PubMed DOI
Nasmyth K., Haering C. H. (2005). The structure and function of SMC and kleisin complexes. PubMed DOI
Nitiss J. L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. PubMed DOI PMC
Oh S. D., Lao J. P., Hwang P. Y., Taylor A. F., Smith G. R., Hunter N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. PubMed DOI PMC
Osman K., Higgins J. D., Sanchez-Moran E., Armstrong S. J., Franklin F. C. (2011). Pathways to meiotic recombination in PubMed DOI
Palecek J., Vidot S., Feng M., Doherty A. J., Lehmann A. R. (2006). The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the kleisin, Nse4, and non-kleisin subunits. PubMed DOI
Palecek J. J., Gruber S. (2015). Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. PubMed DOI
Panchy N., Lehti-Shiu M., Shiu S. H. (2016). Evolution of Gene Duplication in Plants. PubMed DOI PMC
Park H. J., Kim W. Y., Park H. C., Lee S. Y., Bohnert H. J., Yun D. J. (2011). SUMO and SUMOylation in plants. PubMed DOI PMC
Paul M. R., Hochwagen A., Ercan S. (2018). Condensin action and compaction. PubMed DOI PMC
Pebernard S., McDonald W. H., Pavlova Y., Yates J. R., III, Boddy M. N. (2004). Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. PubMed DOI PMC
Pebernard S., Perry J. J., Tainer J. A., Boddy M. N. (2008). Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. PubMed DOI PMC
Potts P. R., Porteus M. H., Yu H. T. (2006). Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. PubMed DOI PMC
Potts P. R., Yu H. (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. PubMed DOI
Pryzhkova M. V., Jordan P. W. (2016). Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. PubMed DOI PMC
Räschle M., Smeenk G., Hansen R. K., Temu T., Oka Y., Hein M. Y., et al. (2015). Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. PubMed DOI PMC
Rastogi S., Liberles D. A. (2005). Subfunctionalization of duplicated genes as a transition state to neofunctionalization. PubMed DOI PMC
Rosso M. G., Li Y., Strizhov N., Reiss B., Dekker K., Weisshaar B. (2003). An PubMed DOI
Sánchez-Morán E., Armstrong S. J., Santos J. L., Franklin F. C., Jones G. H. (2001). Chiasma formation in PubMed
Schubert I., Vu G. T. H. (2016). Genome stability and evolution: attempting a holistic view. PubMed DOI
Schubert V. (2009). SMC proteins and their multiple functions in higher plants. PubMed DOI
Schubert V. (2014). RNA polymerase II forms transcription networks in rye and PubMed DOI
Schubert V., Lermontova I., Schubert I. (2013). The PubMed DOI
Schubert V., Weisshart K. (2015). Abundance and distribution of RNA polymerase II in PubMed DOI PMC
Semon M., Wolfe K. H. (2007). Consequences of genome duplication. PubMed DOI
Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E. A., Sweeney S., et al. (2005). Composition and architecture of the PubMed DOI PMC
Sessions A., Burke E., Presting G., Aux G., McElver J., Patton D., et al. (2002). A high-throughput PubMed DOI PMC
Sjögren C., Nasmyth K. (2001). Sister chromatid cohesion is required for postreplicative double-strand break repair in PubMed DOI
Stephan A. K., Kliszczak M., Dodson H., Cooley C., Morrison C. G. (2011). Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. PubMed DOI PMC
Taylor E. M., Copsey A. C., Hudson J. J. R., Vidot S., Lehmann A. R. (2008). Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. PubMed DOI PMC
Taylor E. M., Moghraby J. S., Lees J. H., Smit B., Moens P. B., Lehmann A. R. (2001). Characterization of a novel human SMC heterodimer homologous to the PubMed DOI PMC
Toby G. G., Gherraby W., Coleman T. R., Golemis E. A. (2003). A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. PubMed DOI PMC
Torres-Rosell J., De Piccoli G., Cordon-Preciado V., Farmer S., Jarmuz A., Machin F., et al. (2007a). Anaphase onset before complete DNA replication with intact checkpoint responses. PubMed DOI
Torres-Rosell J., Sunjevaric I., De Piccoli G., Sacher M., Eckert-Boulet N., Reid R., et al. (2007b). The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. PubMed DOI
Torres-Rosell J., Machin F., Aragon L. (2005). Smc5-Smc6 complex preserves nucleolar integrity in PubMed DOI
Uhlmann F., Nasmyth K. (1998). Cohesion between sister chromatids must be established during DNA replication. PubMed DOI
Ünal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J. E., et al. (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. PubMed DOI
van der Crabben S. N., Hennus M. P., McGregor G. A., Ritter D. I., Nagamani S. C., Wells O. S., et al. (2016). Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. PubMed DOI PMC
Verver D. E., Hwang G. H., Jordan P. W., Hamer G. (2016). Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. PubMed DOI PMC
Verver D. E., Langedijk N. S., Jordan P. W., Repping S., Hamer G. (2014). The SMC5/6 complex is involved in crucial processes during human spermatogenesis. PubMed DOI PMC
Verver D. E., van Pelt A. M., Repping S., Hamer G. (2013). Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. PubMed DOI PMC
Wang K., Wang M., Tang D., Shen Y., Miao C., Hu Q., et al. (2012). The role of rice HEI10 in the formation of meiotic crossovers. PubMed DOI PMC
Wang S., Adams K. L. (2015). Duplicate gene divergence by changes in microRNA binding sites in PubMed DOI PMC
Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in PubMed DOI PMC
Weisshart K., Fuchs J., Schubert V. (2016). Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules in flow-sorted DOI
Whitby M. C. (2005). Making crossovers during meiosis. PubMed DOI
Xaver M., Huang L., Chen D., Klein F. (2013). Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PubMed DOI PMC
Xu P., Yuan D., Liu M., Li C., Liu Y., Zhang S., et al. (2013). AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in PubMed DOI PMC
Yan S., Wang W., Marques J., Mohan R., Saleh A., Durrant W. E., et al. (2013). Salicylic acid activates DNA damage responses to potentiate plant immunity. PubMed DOI PMC
Yong-Gonzales V., Hang L. E., Castellucci F., Branzei D., Zhao X. (2012). The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PubMed DOI PMC
Zabrady K., Adamus M., Vondrova L., Liao C., Skoupilova H., Novakova M., et al. (2016). Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. PubMed DOI PMC
Zhao X., Blobel G. (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. PubMed DOI PMC
Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction