Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility

. 2019 ; 10 () : 774. [epub] 20190620

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31281325

The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.

Zobrazit více v PubMed

Alexander M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technol. 44 117–122. 10.3109/10520296909063335 PubMed DOI

Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657. 10.1126/science.1086391 PubMed DOI

Alt A., Dang H. Q., Wells O. S., Polo L. M., Smith M. A., McGregor G. A., et al. (2017). Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 8:14011. 10.1038/ncomms14011 PubMed DOI PMC

Ambrosino L., Bostan H., di Salle P., Sangiovanni M., Vigilante A., Chiusano M. L. (2016). pATsi: Paralogs and Singleton Genes from Arabidopsis thaliana. Evol. Bioinform. Online 12 1–7. 10.4137/EBO.S32536 PubMed DOI PMC

Armstrong S., Osman K. (2013). Immunolocalization of meiotic proteins in Arabidopsis thaliana: method 2. Methods Mol. Biol. 990 103–107. 10.1007/978-1-62703-333-6_10 PubMed DOI

Båvner A., Matthews J., Sanyal S., Gustafsson J. A., Treuter E. (2005). EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Nucleic Acids Res. 33 3561–3569. 10.1093/nar/gki667 PubMed DOI PMC

Bermúdez-López M., Aragon L. (2017). Smc5/6 complex regulates Sgs1 recombination functions. Curr. Genet. 63 381–388. 10.1007/s00294-016-0648-5 PubMed DOI PMC

Bermúdez-López M., Ceschia A., de Piccoli G., Colomina N., Pasero P., Aragon L., et al. (2010). The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38 6502–6512. 10.1093/nar/gkq546 PubMed DOI PMC

Bermudez-Lopez M., Villoria M. T., Esteras M., Jarmuz A., Torres-Rosell J., Clemente-Blanco A., et al. (2016). Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 30 1339–1356. 10.1101/gad.278275.116 PubMed DOI PMC

Bickel J. S., Chen L., Hayward J., Yeap S. L., Alkers A. E., Chan R. C. (2010). Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLoS Genet. 6:e1001028. 10.1371/journal.pgen.1001028 PubMed DOI PMC

Blanc G., Hokamp K., Wolfe K. H. (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13 137–144. 10.1101/gr.751803 PubMed DOI PMC

Blanc G., Wolfe K. H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16 1667–1678. 10.1105/tpc.021345 PubMed DOI PMC

Bowers J. E., Chapman B. A., Rong J., Paterson A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422 433–438. 10.1038/nature01521 PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1006/abio.1976.9999 PubMed DOI

Carter S. D., Sjögren C. (2012). The SMC complexes, DNA and chromosome topology: right or knot? Crit. Rev. Biochem. Mol. Biol. 47 1–16. 10.3109/10409238.2011.614593 PubMed DOI

Chan R. C., Severson A. F., Meyer B. J. (2004). Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 167 613–625. 10.1083/jcb.200408061 PubMed DOI PMC

Chan Y. W., Fugger K., West S. C. (2018). Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat. Cell Biol. 20 92–103. 10.1038/s41556-017-0011-1 PubMed DOI PMC

Chapman B. A., Bowers J. E., Feltus F. A., Paterson A. H. (2006). Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc. Natl. Acad. Sci. U.S.A. 103 2730–2735. 10.1073/pnas.0507782103 PubMed DOI PMC

Chavez A., George V., Agrawal V., Johnson F. B. (2010). Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J. Biol. Chem. 285 11922–11930. 10.1074/jbc.M109.041277 PubMed DOI PMC

Chelysheva L., Vezon D., Chambon A., Gendrot G., Pereira L., Lemhemdi A., et al. (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 8:e1002799. 10.1371/journal.pgen.1002799 PubMed DOI PMC

Chiolo I., Minoda A., Colmenares S. U., Polyzos A., Costes S. V., Karpen G. H. (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144 732–744. 10.1016/j.cell.2011.02.012 PubMed DOI PMC

Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Coghlan A., Eichler E. E., Oliver S. G., Paterson A. H., Stein L. (2005). Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet. 21 673–682. 10.1016/j.tig.2005.09.009 PubMed DOI

Conrad U., Fiedler U., Artsaenko O., Phillips J. (1997). “Recombinmant proteins from plantas: production and isolation of clinically useful compounds”,” in Methods in Biotechnology eds Cunningham C., Porter S. (Totowa, NJ: Humana Press; ) 103–127. 10.1111/j.1467-7652.2010.00523.x DOI

Conrad U., Plagmann I., Malchow S., Sack M., Floss D. M., Kruglov A. A., et al. (2011). ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 9 22–31. 10.1111/j.1467-7652.2010.00523.x PubMed DOI

Copsey A., Tang S., Jordan P. W., Blitzblau H. G., Newcombe S., Chan A. C., et al. (2013). Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet. 9:e1004071. 10.1371/journal.pgen.1004071 PubMed DOI PMC

Cuylen S., Haering C. H. (2011). Deciphering condensin action during chromosome segregation. Trends Cell Biol. 21 552–559. 10.1016/j.tcb.2011.06.003 PubMed DOI

Czechowski T., Stitt M., Altmann T., Udvardi M. K., Scheible W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139 5–17. 10.1104/pp.105.063743 PubMed DOI PMC

De Piccoli G., Cortes-Ledesma F., Ira G., Torres-Rosell J., Uhle S., Farmer S., et al. (2006). Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8 1032–1034. 10.1038/ncb1466 PubMed DOI PMC

De Piccoli G., Torres-Rosell J., Aragon L. (2009). The unnamed complex: what do we know about Smc5-Smc6? Chromosome Res. 17 251–263. 10.1007/s10577-008-9016-8 PubMed DOI

Diaz M., Pecinka A. (2018). Scaffolding for repair: understanding molecular functions of the SMC5/6 complex. Genes 9:E36. 10.3390/genes9010036 PubMed DOI PMC

Diaz M., Pecinkova P., Nowicka A., Baroux C., Sakamoto T., Gandha P. Y., et al. (2019). SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development in Arabidopsis. Plant Cell. 10.1105/tpc.18.00043 [Epub ahead of print]. PubMed DOI PMC

Duan X., Yang Y., Chen Y. H., Arenz J., Rangi G. K., Zhao X., et al. (2009). Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284 8507–8515. 10.1074/jbc.M809139200 PubMed DOI PMC

Farmer S., San-Segundo P. A., Aragon L. (2011). The Smc5-Smc6 complex is required to remove chromosome junctions in meiosis. PLoS One 6:e20948. 10.1371/journal.pone.0020948 PubMed DOI PMC

Feder M. E. (2007). Evolvability of physiological and biochemical traits: evolutionary mechanisms including and beyond single-nucleotide mutation. J. Exp. Biol. 210 1653–1660. 10.1242/jeb.02725 PubMed DOI

Fernandez-Capetillo O. (2016). The (elusive) role of the SMC5/6 complex. Cell Cycle 15 775–776. 10.1080/15384101.2015.1137713 PubMed DOI PMC

Force A., Cresko W. A., Pickett F. B., Proulx S. R., Amemiya C., Lynch M. (2005). The origin of subfunctions and modular gene regulation. Genetics 170 433–446. 10.1534/genetics.104.027607 PubMed DOI PMC

Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 1531–1545. PubMed PMC

Fousteri M. I., Lehmann A. R. (2000). A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19 1691–1702. 10.1093/emboj/19.7.1691 PubMed DOI PMC

Gallego-Paez L. M., Tanaka H., Bando M., Takahashi M., Nozaki N., Nakato R., et al. (2014). Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25 302–317. 10.1091/mbc.E13-01-0020 PubMed DOI PMC

Gomez R., Jordan P. W., Viera A., Alsheimer M., Fukuda T., Jessberger R., et al. (2013). Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J. Cell Sci. 126 4239–4252. 10.1242/jcs.130195 PubMed DOI PMC

Guerineau M., Kriz Z., Kozakova L., Bednarova K., Janos P., Palecek J. (2012). Analysis of the Nse3/MAGE-binding domain of the Nse4/EID family proteins. PLoS One 7:e35813. 10.1371/journal.pone.0035813 PubMed DOI PMC

Haering C. H., Gruber S. (2016a). SnapShot: SMC Protein Complexes Part I. Cell 164 326–326.e1. 10.1016/j.cell.2015.12.026 PubMed DOI

Haering C. H., Gruber S. (2016b). SnapShot: SMC Protein Complexes Part II. Cell 164:818.e1. 10.1016/j.cell.2016.01.052 PubMed DOI

Hanin M., Mengiste T., Bogucki A., Paszkowski J. (2000). Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J. 24 183–189. 10.1046/j.1365-313x.2000.00867.x PubMed DOI

Hassler M., Shaltiel I. A., Haering C. H. (2018). Towards a unified model of SMC complex function. Curr. Biol. 28 R1266–R1281. 10.1016/j.cub.2018.08.034 PubMed DOI PMC

Hazbun T. R., Malmstrom L., Anderson S., Graczyk B. J., Fox B., Riffle M., et al. (2003). Assigning function to yeast proteins by integration of technologies. Mol. Cell 12 1353–1365. 10.1016/s1097-2765(03)00476-3 PubMed DOI

Hesse S., Zelkowski M., Mikhailova E., Keijzer K., Houben A., Schubert V. (2019). Ultrastructure, and dynamics of synaptonemal complex components during meiotic pairing and synapsis of standard (A) and accessory (B) rye chromosomes. Front. Plant Sci. 10.3389/fpls.2019.00773 PubMed DOI PMC

Higgins J. D., Armstrong S. J., Franklin F. C., Jones G. H. (2004). The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev. 18 2557–2570. 10.1101/gad.317504 PubMed DOI PMC

Higgins J. D., Sanchez-Moran E., Armstrong S. J., Jones G. H., Franklin F. C. (2005). The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19 2488–2500. 10.1101/gad.354705 PubMed DOI PMC

Hirano T. (2006). At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7 311–322. 10.1038/nrm1909 PubMed DOI

Hong Y., Sonneville R., Agostinho A., Meier B., Wang B., Blow J. J., et al. (2016). The SMC-5/6 complex and the HIM-6 (BLM) helicase synergistically promote meiotic recombination intermediate processing and chromosome maturation during Caenorhabditis elegans meiosis. PLoS Genet. 12:e1005872. 10.1371/journal.pgen.1005872 PubMed DOI PMC

Houlard M., Godwin J., Metson J., Lee J., Hirano T., Nasmyth K. (2015). Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17 771–781. 10.1038/ncb3167 PubMed DOI PMC

Hu B., Liao C., Millson S. H., Mollapour M., Prodromou C., Pearl L. H., et al. (2005). Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. Mol. Microbiol. 55 1735–1750. 10.1111/j.1365-2958.2005.04531.x PubMed DOI

Huang L., Yang S., Zhang S., Liu M., Lai J., Qi Y., et al. (2009). The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 60 666–678. 10.1111/j.1365-313X.2009.03992.x PubMed DOI

Hudson J. J. R., Bednarova K., Kozakova L., Liao C. Y., Guerineau M., Colnaghi R., et al. (2011). Interactions between the Nse3 and Nse4 components of the SMC5-6 Complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One 6:e17270. 10.1371/journal.pone.0017270 PubMed DOI PMC

Hurles M. (2004). Gene duplication: the genomic trade in spare parts. PLoS Biol. 2:E206. 10.1371/journal.pbio.0020206 PubMed DOI PMC

Hwang G., Sun F., O’Brien M., Eppig J. J., Handel M. A., Jordan P. W. (2017). SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144 1648–1660. 10.1242/dev.145607 PubMed DOI PMC

Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19 4780–4780. 10.1093/nar/19.17.4780 PubMed DOI PMC

Innan H., Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11 97–108. 10.1038/nrg2689 PubMed DOI

Irmisch A., Ampatzidou E., Mizuno K., O’Connell M. J., Murray J. M. (2009). Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J. 28 144–155. 10.1038/emboj.2008.273 PubMed DOI PMC

Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., et al. (2009). SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21 2284–2297. 10.1105/tpc.109.068072 PubMed DOI PMC

Ishida T., Yoshimura M., Miura K., Sugimoto K. (2012). MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS One 7:e46897. 10.1371/journal.pone.0046897 PubMed DOI PMC

Jeppsson K., Carlborg K. K., Nakato R., Berta D. G., Lilienthal I., Kanno T., et al. (2014a). The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 10:e1004680. 10.1371/journal.pgen.1004680 PubMed DOI PMC

Jeppsson K., Kanno T., Shirahige K., Sjogren C. (2014b). The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15 601–614. 10.1038/nrm3857 PubMed DOI

Jessop L., Rockmill B., Roeder G. S., Lichten M. (2006). Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet. 2:e155. 10.1371/journal.pgen.0020155 PubMed DOI PMC

Kakui Y., Uhlmann F. (2018). SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr. Genet. 64 335–339. 10.1007/s00294-017-0755-y PubMed DOI PMC

Kanno T., Berta D. G., Sjogren C. (2015). The Smc5/6 Complex Is an ATP-dependent intermolecular DNA linker. Cell Rep. 12 1471–1482. 10.1016/j.celrep.2015.07.048 PubMed DOI

Kawabe A., Nasuda S. (2005). Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol. Genet. Genomics 272 593–602. 10.1007/s00438-004-1081-x PubMed DOI

Kegel A., Betts-Lindroos H., Kanno T., Jeppsson K., Strom L., Katou Y., et al. (2011). Chromosome length influences replication-induced topological stress. Nature 471 392–396. 10.1038/nature09791 PubMed DOI

Kinoshita K., Hirano T. (2017). Dynamic organization of mitotic chromosomes. Curr. Opin. Cell Biol. 46 46–53. 10.1016/j.ceb.2017.01.006 PubMed DOI

Knoll A., Schröpfer S., Puchta H. (2014). The RTR complex as caretaker of genome stability and its unique meiotic function in plants. Front. Plant Sci. 5:33. 10.3389/fpls.2014.00033 PubMed DOI PMC

Kozakova L., Vondrova L., Stejskal K., Charalabous P., Kolesar P., Lehmann A. R., et al. (2015). The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 14 920–930. 10.1080/15384101.2014.1000112 PubMed DOI PMC

Kschonsak M., Merkel F., Bisht S., Metz J., Rybin V., Hassler M., et al. (2017). Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171 588–600.e24. 10.1016/j.cell.2017.09.008 PubMed DOI PMC

Ku H. M., Vision T., Liu J., Tanksley S. D. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. U.S.A. 97 9121–9126. 10.1073/pnas.160271297 PubMed DOI PMC

Laflamme G., Tremblay-Boudreault T., Roy M. A., Andersen P., Bonneil E., Atchia K., et al. (2014). Structural maintenance of chromosome (SMC) proteins link microtubule stability to genome integrity. J. Biol. Chem. 289 27418–27431. 10.1074/jbc.M114.569608 PubMed DOI PMC

Lehmann A. R. (2005). The role of SMC proteins in the responses to DNA damage. DNA Repair 4 309–314. 10.1016/j.dnarep.2004.07.009 PubMed DOI

Li B., Carey M., Workman J. L. (2007). The role of chromatin during transcription. Cell 128 707–719. 10.1016/j.cell.2007.01.015 PubMed DOI

Li G., Zou W., Jian L., Qian J., Deng Y., Zhao J. (2017). Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. J. Exp. Bot. 68 1039–1054. 10.1093/jxb/erx016 PubMed DOI PMC

Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 289–293. 10.1126/science.1181369 PubMed DOI PMC

Lilienthal I., Kanno T., Sjögren C. (2013). Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLoS Genet. 9:e1003898. 10.1371/journal.pgen.1003898 PubMed DOI PMC

Lindroos H. B., Ström L., Itoh T., Katou Y., Shirahige K., Sjögren C. (2006). Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22 755–767. 10.1016/j.molcel.2006.05.014 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lynch M., Conery J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290 1151–1155. 10.1126/science.290.5494.1151 PubMed DOI

Maeshima K., Laemmli U. K. (2003). A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4 467–480. 10.1016/S1534-5807(03)00092-3 PubMed DOI

Magadum S., Banerjee U., Murugan P., Gangapur D., Ravikesavan R. (2013). Gene duplication as a major force in evolution. J. Genet. 92 155–161. 10.1007/s12041-013-0212-8 PubMed DOI

Martinez-Zapater J. M., Estelle M. A., Somerville C. R. (1986). A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204 417–423. 10.1007/bf00331018 DOI

Mengiste T., Revenkova E., Bechtold N., Paszkowski J. (1999). An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO J. 18 4505–4512. 10.1093/emboj/18.16.4505 PubMed DOI PMC

Mukhopadhyay D., Dasso M. (2017). The SUMO pathway in mitosis. Adv. Exp. Med. Biol. 963 171–184. 10.1007/978-3-319-50044-7_10 PubMed DOI PMC

Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., et al. (2010). Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 74 1315–1319. 10.1271/bbb.100184 PubMed DOI

Nasmyth K., Haering C. H. (2005). The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74 595–648. 10.1146/annurev.biochem.74.082803.133219 PubMed DOI

Nitiss J. L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9 327–337. 10.1038/nrc2608 PubMed DOI PMC

Oh S. D., Lao J. P., Hwang P. Y., Taylor A. F., Smith G. R., Hunter N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130 259–272. 10.1016/j.cell.2007.05.035 PubMed DOI PMC

Osman K., Higgins J. D., Sanchez-Moran E., Armstrong S. J., Franklin F. C. (2011). Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol. 190 523–544. 10.1111/j.1469-8137.2011.03665.x PubMed DOI

Palecek J., Vidot S., Feng M., Doherty A. J., Lehmann A. R. (2006). The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the kleisin, Nse4, and non-kleisin subunits. J. Biol. Chem. 281 36952–36959. 10.1074/jbc.M608004200 PubMed DOI

Palecek J. J., Gruber S. (2015). Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23 2183–2190. 10.1016/j.str.2015.10.004 PubMed DOI

Panchy N., Lehti-Shiu M., Shiu S. H. (2016). Evolution of Gene Duplication in Plants. Plant Physiol. 171 2294–2316. 10.1104/pp.16.00523 PubMed DOI PMC

Park H. J., Kim W. Y., Park H. C., Lee S. Y., Bohnert H. J., Yun D. J. (2011). SUMO and SUMOylation in plants. Mol. Cells 32 305–316. 10.1007/s10059-011-0122-7 PubMed DOI PMC

Paul M. R., Hochwagen A., Ercan S. (2018). Condensin action and compaction. Curr. Genet. 65 407–415. 10.1007/s00294-018-0899-4 PubMed DOI PMC

Pebernard S., McDonald W. H., Pavlova Y., Yates J. R., III, Boddy M. N. (2004). Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol. Biol. Cell 15 4866–4876. 10.1091/mbc.e04-05-0436 PubMed DOI PMC

Pebernard S., Perry J. J., Tainer J. A., Boddy M. N. (2008). Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol. Biol. Cell 19 4099–4109. 10.1091/mbc.E08-02-0226 PubMed DOI PMC

Potts P. R., Porteus M. H., Yu H. T. (2006). Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25 3377–3388. 10.1038/sj.emboj.7601218 PubMed DOI PMC

Potts P. R., Yu H. (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14 581–590. 10.1038/nsmb1259 PubMed DOI

Pryzhkova M. V., Jordan P. W. (2016). Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J. Cell Sci. 129 1619–1634. 10.1242/jcs.179036 PubMed DOI PMC

Räschle M., Smeenk G., Hansen R. K., Temu T., Oka Y., Hein M. Y., et al. (2015). Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348:1253671. 10.1126/science.1253671 PubMed DOI PMC

Rastogi S., Liberles D. A. (2005). Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5:28. 10.1186/1471-2148-5-28 PubMed DOI PMC

Rosso M. G., Li Y., Strizhov N., Reiss B., Dekker K., Weisshaar B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 53 247–259. 10.1023/B:PLAN.0000009297.37235.4a PubMed DOI

Sánchez-Morán E., Armstrong S. J., Santos J. L., Franklin F. C., Jones G. H. (2001). Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res. 9 121–128. PubMed

Schubert I., Vu G. T. H. (2016). Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 21 749–757. 10.1016/j.tplants.2016.06.003 PubMed DOI

Schubert V. (2009). SMC proteins and their multiple functions in higher plants. Cytogenet. Genome Res. 124 202–214. 10.1159/000218126 PubMed DOI

Schubert V. (2014). RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet. Genome Res. 143 69–77. 10.1159/000365233 PubMed DOI

Schubert V., Lermontova I., Schubert I. (2013). The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122 517–533. 10.1007/s00412-013-0424-y PubMed DOI

Schubert V., Weisshart K. (2015). Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J. Exp. Bot. 66 1687–1698. 10.1093/jxb/erv091 PubMed DOI PMC

Semon M., Wolfe K. H. (2007). Consequences of genome duplication. Curr. Opin. Genet. Dev. 17 505–512. 10.1016/j.gde.2007.09.007 PubMed DOI

Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E. A., Sweeney S., et al. (2005). Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol. Cell. Biol. 25 172–184. 10.1128/MCB.25.1.172-184.2005 PubMed DOI PMC

Sessions A., Burke E., Presting G., Aux G., McElver J., Patton D., et al. (2002). A high-throughput Arabidopsis reverse genetics system. Plant Cell 14 2985–2994. 10.1105/tpc.004630 PubMed DOI PMC

Sjögren C., Nasmyth K. (2001). Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11 991–995. 10.1016/S0960-9822(01)00271-8 PubMed DOI

Stephan A. K., Kliszczak M., Dodson H., Cooley C., Morrison C. G. (2011). Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell. Biol. 31 1369–1381. 10.1128/MCB.00786-10 PubMed DOI PMC

Taylor E. M., Copsey A. C., Hudson J. J. R., Vidot S., Lehmann A. R. (2008). Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol. Cell. Biol. 28 1197–1206. 10.1128/mcb.00767-07 PubMed DOI PMC

Taylor E. M., Moghraby J. S., Lees J. H., Smit B., Moens P. B., Lehmann A. R. (2001). Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell 12 1583–1594. 10.1091/mbc.12.6.1583 PubMed DOI PMC

Toby G. G., Gherraby W., Coleman T. R., Golemis E. A. (2003). A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. Mol. Cell. Biol. 23 2109–2122. 10.1128/MCB.23.6.2109-2122.2003 PubMed DOI PMC

Torres-Rosell J., De Piccoli G., Cordon-Preciado V., Farmer S., Jarmuz A., Machin F., et al. (2007a). Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315 1411–1415. 10.1126/science.1134025 PubMed DOI

Torres-Rosell J., Sunjevaric I., De Piccoli G., Sacher M., Eckert-Boulet N., Reid R., et al. (2007b). The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9 923–931. 10.1038/ncb1619 PubMed DOI

Torres-Rosell J., Machin F., Aragon L. (2005). Smc5-Smc6 complex preserves nucleolar integrity in S. cerevisiae. Cell Cycle 4 868–872. 10.4161/cc.4.7.1825 PubMed DOI

Uhlmann F., Nasmyth K. (1998). Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8 1095–1101. 10.1016/S0960-9822(98)70463-4 PubMed DOI

Ünal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J. E., et al. (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16 991–1002. 10.1016/j.molcel.2004.11.027 PubMed DOI

van der Crabben S. N., Hennus M. P., McGregor G. A., Ritter D. I., Nagamani S. C., Wells O. S., et al. (2016). Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Invest. 126 2881–2892. 10.1172/JCI82890 PubMed DOI PMC

Verver D. E., Hwang G. H., Jordan P. W., Hamer G. (2016). Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. Chromosoma 125 15–27. 10.1007/s00412-015-0518-9 PubMed DOI PMC

Verver D. E., Langedijk N. S., Jordan P. W., Repping S., Hamer G. (2014). The SMC5/6 complex is involved in crucial processes during human spermatogenesis. Biol. Reprod. 91:22. 10.1095/biolreprod.114.118596 PubMed DOI PMC

Verver D. E., van Pelt A. M., Repping S., Hamer G. (2013). Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. Cell Death Dis. 4:e749. 10.1038/cddis.2013.269 PubMed DOI PMC

Wang K., Wang M., Tang D., Shen Y., Miao C., Hu Q., et al. (2012). The role of rice HEI10 in the formation of meiotic crossovers. PLoS Genet. 8:e1002809. 10.1371/journal.pgen.1002809 PubMed DOI PMC

Wang S., Adams K. L. (2015). Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica. Genome Biol. Evol. 7 646–655. 10.1093/gbe/evv023 PubMed DOI PMC

Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21 2688–2699. 10.1105/tpc.108.060525 PubMed DOI PMC

Weisshart K., Fuchs J., Schubert V. (2016). Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules in flow-sorted Arabidopsis nuclei. Bioprotocol 6:e1725 10.21769/BioProtoc.1725 DOI

Whitby M. C. (2005). Making crossovers during meiosis. Biochem. Soc. Trans. 33 1451–1455. 10.1042/BST20051451 PubMed DOI

Xaver M., Huang L., Chen D., Klein F. (2013). Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLoS Genet. 9:e1004067. 10.1371/journal.pgen.1004067 PubMed DOI PMC

Xu P., Yuan D., Liu M., Li C., Liu Y., Zhang S., et al. (2013). AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant Physiol. 161 1755–1768. 10.1104/pp.112.208942 PubMed DOI PMC

Yan S., Wang W., Marques J., Mohan R., Saleh A., Durrant W. E., et al. (2013). Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52 602–610. 10.1016/j.molcel.2013.09.019 PubMed DOI PMC

Yong-Gonzales V., Hang L. E., Castellucci F., Branzei D., Zhao X. (2012). The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS One 7:e51540. 10.1371/journal.pone.0051540 PubMed DOI PMC

Zabrady K., Adamus M., Vondrova L., Liao C., Skoupilova H., Novakova M., et al. (2016). Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44 1064–1079. 10.1093/nar/gkv1021 PubMed DOI PMC

Zhao X., Blobel G. (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. U.S.A. 102 4777–4782. 10.1073/pnas.0500537102 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...