Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31281325
PubMed Central
PMC6596448
DOI
10.3389/fpls.2019.00774
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, NSE4 δ-kleisin, SMC5/6 complex, meiosis, mitosis, nucleus, phylogeny, super-resolution microscopy,
- Publikační typ
- časopisecké články MeSH
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Zobrazit více v PubMed
Alexander M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technol. 44 117–122. 10.3109/10520296909063335 PubMed DOI
Alonso J. M., Stepanova A. N., Leisse T. J., Kim C. J., Chen H., Shinn P., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657. 10.1126/science.1086391 PubMed DOI
Alt A., Dang H. Q., Wells O. S., Polo L. M., Smith M. A., McGregor G. A., et al. (2017). Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 8:14011. 10.1038/ncomms14011 PubMed DOI PMC
Ambrosino L., Bostan H., di Salle P., Sangiovanni M., Vigilante A., Chiusano M. L. (2016). pATsi: Paralogs and Singleton Genes from Arabidopsis thaliana. Evol. Bioinform. Online 12 1–7. 10.4137/EBO.S32536 PubMed DOI PMC
Armstrong S., Osman K. (2013). Immunolocalization of meiotic proteins in Arabidopsis thaliana: method 2. Methods Mol. Biol. 990 103–107. 10.1007/978-1-62703-333-6_10 PubMed DOI
Båvner A., Matthews J., Sanyal S., Gustafsson J. A., Treuter E. (2005). EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Nucleic Acids Res. 33 3561–3569. 10.1093/nar/gki667 PubMed DOI PMC
Bermúdez-López M., Aragon L. (2017). Smc5/6 complex regulates Sgs1 recombination functions. Curr. Genet. 63 381–388. 10.1007/s00294-016-0648-5 PubMed DOI PMC
Bermúdez-López M., Ceschia A., de Piccoli G., Colomina N., Pasero P., Aragon L., et al. (2010). The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38 6502–6512. 10.1093/nar/gkq546 PubMed DOI PMC
Bermudez-Lopez M., Villoria M. T., Esteras M., Jarmuz A., Torres-Rosell J., Clemente-Blanco A., et al. (2016). Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 30 1339–1356. 10.1101/gad.278275.116 PubMed DOI PMC
Bickel J. S., Chen L., Hayward J., Yeap S. L., Alkers A. E., Chan R. C. (2010). Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLoS Genet. 6:e1001028. 10.1371/journal.pgen.1001028 PubMed DOI PMC
Blanc G., Hokamp K., Wolfe K. H. (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13 137–144. 10.1101/gr.751803 PubMed DOI PMC
Blanc G., Wolfe K. H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16 1667–1678. 10.1105/tpc.021345 PubMed DOI PMC
Bowers J. E., Chapman B. A., Rong J., Paterson A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422 433–438. 10.1038/nature01521 PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1006/abio.1976.9999 PubMed DOI
Carter S. D., Sjögren C. (2012). The SMC complexes, DNA and chromosome topology: right or knot? Crit. Rev. Biochem. Mol. Biol. 47 1–16. 10.3109/10409238.2011.614593 PubMed DOI
Chan R. C., Severson A. F., Meyer B. J. (2004). Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 167 613–625. 10.1083/jcb.200408061 PubMed DOI PMC
Chan Y. W., Fugger K., West S. C. (2018). Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat. Cell Biol. 20 92–103. 10.1038/s41556-017-0011-1 PubMed DOI PMC
Chapman B. A., Bowers J. E., Feltus F. A., Paterson A. H. (2006). Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc. Natl. Acad. Sci. U.S.A. 103 2730–2735. 10.1073/pnas.0507782103 PubMed DOI PMC
Chavez A., George V., Agrawal V., Johnson F. B. (2010). Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J. Biol. Chem. 285 11922–11930. 10.1074/jbc.M109.041277 PubMed DOI PMC
Chelysheva L., Vezon D., Chambon A., Gendrot G., Pereira L., Lemhemdi A., et al. (2012). The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 8:e1002799. 10.1371/journal.pgen.1002799 PubMed DOI PMC
Chiolo I., Minoda A., Colmenares S. U., Polyzos A., Costes S. V., Karpen G. H. (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144 732–744. 10.1016/j.cell.2011.02.012 PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Coghlan A., Eichler E. E., Oliver S. G., Paterson A. H., Stein L. (2005). Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet. 21 673–682. 10.1016/j.tig.2005.09.009 PubMed DOI
Conrad U., Fiedler U., Artsaenko O., Phillips J. (1997). “Recombinmant proteins from plantas: production and isolation of clinically useful compounds”,” in Methods in Biotechnology eds Cunningham C., Porter S. (Totowa, NJ: Humana Press; ) 103–127. 10.1111/j.1467-7652.2010.00523.x DOI
Conrad U., Plagmann I., Malchow S., Sack M., Floss D. M., Kruglov A. A., et al. (2011). ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 9 22–31. 10.1111/j.1467-7652.2010.00523.x PubMed DOI
Copsey A., Tang S., Jordan P. W., Blitzblau H. G., Newcombe S., Chan A. C., et al. (2013). Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet. 9:e1004071. 10.1371/journal.pgen.1004071 PubMed DOI PMC
Cuylen S., Haering C. H. (2011). Deciphering condensin action during chromosome segregation. Trends Cell Biol. 21 552–559. 10.1016/j.tcb.2011.06.003 PubMed DOI
Czechowski T., Stitt M., Altmann T., Udvardi M. K., Scheible W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139 5–17. 10.1104/pp.105.063743 PubMed DOI PMC
De Piccoli G., Cortes-Ledesma F., Ira G., Torres-Rosell J., Uhle S., Farmer S., et al. (2006). Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8 1032–1034. 10.1038/ncb1466 PubMed DOI PMC
De Piccoli G., Torres-Rosell J., Aragon L. (2009). The unnamed complex: what do we know about Smc5-Smc6? Chromosome Res. 17 251–263. 10.1007/s10577-008-9016-8 PubMed DOI
Diaz M., Pecinka A. (2018). Scaffolding for repair: understanding molecular functions of the SMC5/6 complex. Genes 9:E36. 10.3390/genes9010036 PubMed DOI PMC
Diaz M., Pecinkova P., Nowicka A., Baroux C., Sakamoto T., Gandha P. Y., et al. (2019). SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development in Arabidopsis. Plant Cell. 10.1105/tpc.18.00043 [Epub ahead of print]. PubMed DOI PMC
Duan X., Yang Y., Chen Y. H., Arenz J., Rangi G. K., Zhao X., et al. (2009). Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284 8507–8515. 10.1074/jbc.M809139200 PubMed DOI PMC
Farmer S., San-Segundo P. A., Aragon L. (2011). The Smc5-Smc6 complex is required to remove chromosome junctions in meiosis. PLoS One 6:e20948. 10.1371/journal.pone.0020948 PubMed DOI PMC
Feder M. E. (2007). Evolvability of physiological and biochemical traits: evolutionary mechanisms including and beyond single-nucleotide mutation. J. Exp. Biol. 210 1653–1660. 10.1242/jeb.02725 PubMed DOI
Fernandez-Capetillo O. (2016). The (elusive) role of the SMC5/6 complex. Cell Cycle 15 775–776. 10.1080/15384101.2015.1137713 PubMed DOI PMC
Force A., Cresko W. A., Pickett F. B., Proulx S. R., Amemiya C., Lynch M. (2005). The origin of subfunctions and modular gene regulation. Genetics 170 433–446. 10.1534/genetics.104.027607 PubMed DOI PMC
Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 1531–1545. PubMed PMC
Fousteri M. I., Lehmann A. R. (2000). A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19 1691–1702. 10.1093/emboj/19.7.1691 PubMed DOI PMC
Gallego-Paez L. M., Tanaka H., Bando M., Takahashi M., Nozaki N., Nakato R., et al. (2014). Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25 302–317. 10.1091/mbc.E13-01-0020 PubMed DOI PMC
Gomez R., Jordan P. W., Viera A., Alsheimer M., Fukuda T., Jessberger R., et al. (2013). Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J. Cell Sci. 126 4239–4252. 10.1242/jcs.130195 PubMed DOI PMC
Guerineau M., Kriz Z., Kozakova L., Bednarova K., Janos P., Palecek J. (2012). Analysis of the Nse3/MAGE-binding domain of the Nse4/EID family proteins. PLoS One 7:e35813. 10.1371/journal.pone.0035813 PubMed DOI PMC
Haering C. H., Gruber S. (2016a). SnapShot: SMC Protein Complexes Part I. Cell 164 326–326.e1. 10.1016/j.cell.2015.12.026 PubMed DOI
Haering C. H., Gruber S. (2016b). SnapShot: SMC Protein Complexes Part II. Cell 164:818.e1. 10.1016/j.cell.2016.01.052 PubMed DOI
Hanin M., Mengiste T., Bogucki A., Paszkowski J. (2000). Elevated levels of intrachromosomal homologous recombination in Arabidopsis overexpressing the MIM gene. Plant J. 24 183–189. 10.1046/j.1365-313x.2000.00867.x PubMed DOI
Hassler M., Shaltiel I. A., Haering C. H. (2018). Towards a unified model of SMC complex function. Curr. Biol. 28 R1266–R1281. 10.1016/j.cub.2018.08.034 PubMed DOI PMC
Hazbun T. R., Malmstrom L., Anderson S., Graczyk B. J., Fox B., Riffle M., et al. (2003). Assigning function to yeast proteins by integration of technologies. Mol. Cell 12 1353–1365. 10.1016/s1097-2765(03)00476-3 PubMed DOI
Hesse S., Zelkowski M., Mikhailova E., Keijzer K., Houben A., Schubert V. (2019). Ultrastructure, and dynamics of synaptonemal complex components during meiotic pairing and synapsis of standard (A) and accessory (B) rye chromosomes. Front. Plant Sci. 10.3389/fpls.2019.00773 PubMed DOI PMC
Higgins J. D., Armstrong S. J., Franklin F. C., Jones G. H. (2004). The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev. 18 2557–2570. 10.1101/gad.317504 PubMed DOI PMC
Higgins J. D., Sanchez-Moran E., Armstrong S. J., Jones G. H., Franklin F. C. (2005). The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19 2488–2500. 10.1101/gad.354705 PubMed DOI PMC
Hirano T. (2006). At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7 311–322. 10.1038/nrm1909 PubMed DOI
Hong Y., Sonneville R., Agostinho A., Meier B., Wang B., Blow J. J., et al. (2016). The SMC-5/6 complex and the HIM-6 (BLM) helicase synergistically promote meiotic recombination intermediate processing and chromosome maturation during Caenorhabditis elegans meiosis. PLoS Genet. 12:e1005872. 10.1371/journal.pgen.1005872 PubMed DOI PMC
Houlard M., Godwin J., Metson J., Lee J., Hirano T., Nasmyth K. (2015). Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17 771–781. 10.1038/ncb3167 PubMed DOI PMC
Hu B., Liao C., Millson S. H., Mollapour M., Prodromou C., Pearl L. H., et al. (2005). Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. Mol. Microbiol. 55 1735–1750. 10.1111/j.1365-2958.2005.04531.x PubMed DOI
Huang L., Yang S., Zhang S., Liu M., Lai J., Qi Y., et al. (2009). The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 60 666–678. 10.1111/j.1365-313X.2009.03992.x PubMed DOI
Hudson J. J. R., Bednarova K., Kozakova L., Liao C. Y., Guerineau M., Colnaghi R., et al. (2011). Interactions between the Nse3 and Nse4 components of the SMC5-6 Complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One 6:e17270. 10.1371/journal.pone.0017270 PubMed DOI PMC
Hurles M. (2004). Gene duplication: the genomic trade in spare parts. PLoS Biol. 2:E206. 10.1371/journal.pbio.0020206 PubMed DOI PMC
Hwang G., Sun F., O’Brien M., Eppig J. J., Handel M. A., Jordan P. W. (2017). SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144 1648–1660. 10.1242/dev.145607 PubMed DOI PMC
Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19 4780–4780. 10.1093/nar/19.17.4780 PubMed DOI PMC
Innan H., Kondrashov F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11 97–108. 10.1038/nrg2689 PubMed DOI
Irmisch A., Ampatzidou E., Mizuno K., O’Connell M. J., Murray J. M. (2009). Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J. 28 144–155. 10.1038/emboj.2008.273 PubMed DOI PMC
Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., et al. (2009). SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21 2284–2297. 10.1105/tpc.109.068072 PubMed DOI PMC
Ishida T., Yoshimura M., Miura K., Sugimoto K. (2012). MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS One 7:e46897. 10.1371/journal.pone.0046897 PubMed DOI PMC
Jeppsson K., Carlborg K. K., Nakato R., Berta D. G., Lilienthal I., Kanno T., et al. (2014a). The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 10:e1004680. 10.1371/journal.pgen.1004680 PubMed DOI PMC
Jeppsson K., Kanno T., Shirahige K., Sjogren C. (2014b). The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15 601–614. 10.1038/nrm3857 PubMed DOI
Jessop L., Rockmill B., Roeder G. S., Lichten M. (2006). Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet. 2:e155. 10.1371/journal.pgen.0020155 PubMed DOI PMC
Kakui Y., Uhlmann F. (2018). SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr. Genet. 64 335–339. 10.1007/s00294-017-0755-y PubMed DOI PMC
Kanno T., Berta D. G., Sjogren C. (2015). The Smc5/6 Complex Is an ATP-dependent intermolecular DNA linker. Cell Rep. 12 1471–1482. 10.1016/j.celrep.2015.07.048 PubMed DOI
Kawabe A., Nasuda S. (2005). Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol. Genet. Genomics 272 593–602. 10.1007/s00438-004-1081-x PubMed DOI
Kegel A., Betts-Lindroos H., Kanno T., Jeppsson K., Strom L., Katou Y., et al. (2011). Chromosome length influences replication-induced topological stress. Nature 471 392–396. 10.1038/nature09791 PubMed DOI
Kinoshita K., Hirano T. (2017). Dynamic organization of mitotic chromosomes. Curr. Opin. Cell Biol. 46 46–53. 10.1016/j.ceb.2017.01.006 PubMed DOI
Knoll A., Schröpfer S., Puchta H. (2014). The RTR complex as caretaker of genome stability and its unique meiotic function in plants. Front. Plant Sci. 5:33. 10.3389/fpls.2014.00033 PubMed DOI PMC
Kozakova L., Vondrova L., Stejskal K., Charalabous P., Kolesar P., Lehmann A. R., et al. (2015). The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 14 920–930. 10.1080/15384101.2014.1000112 PubMed DOI PMC
Kschonsak M., Merkel F., Bisht S., Metz J., Rybin V., Hassler M., et al. (2017). Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171 588–600.e24. 10.1016/j.cell.2017.09.008 PubMed DOI PMC
Ku H. M., Vision T., Liu J., Tanksley S. D. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. U.S.A. 97 9121–9126. 10.1073/pnas.160271297 PubMed DOI PMC
Laflamme G., Tremblay-Boudreault T., Roy M. A., Andersen P., Bonneil E., Atchia K., et al. (2014). Structural maintenance of chromosome (SMC) proteins link microtubule stability to genome integrity. J. Biol. Chem. 289 27418–27431. 10.1074/jbc.M114.569608 PubMed DOI PMC
Lehmann A. R. (2005). The role of SMC proteins in the responses to DNA damage. DNA Repair 4 309–314. 10.1016/j.dnarep.2004.07.009 PubMed DOI
Li B., Carey M., Workman J. L. (2007). The role of chromatin during transcription. Cell 128 707–719. 10.1016/j.cell.2007.01.015 PubMed DOI
Li G., Zou W., Jian L., Qian J., Deng Y., Zhao J. (2017). Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. J. Exp. Bot. 68 1039–1054. 10.1093/jxb/erx016 PubMed DOI PMC
Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 289–293. 10.1126/science.1181369 PubMed DOI PMC
Lilienthal I., Kanno T., Sjögren C. (2013). Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLoS Genet. 9:e1003898. 10.1371/journal.pgen.1003898 PubMed DOI PMC
Lindroos H. B., Ström L., Itoh T., Katou Y., Shirahige K., Sjögren C. (2006). Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22 755–767. 10.1016/j.molcel.2006.05.014 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lynch M., Conery J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290 1151–1155. 10.1126/science.290.5494.1151 PubMed DOI
Maeshima K., Laemmli U. K. (2003). A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4 467–480. 10.1016/S1534-5807(03)00092-3 PubMed DOI
Magadum S., Banerjee U., Murugan P., Gangapur D., Ravikesavan R. (2013). Gene duplication as a major force in evolution. J. Genet. 92 155–161. 10.1007/s12041-013-0212-8 PubMed DOI
Martinez-Zapater J. M., Estelle M. A., Somerville C. R. (1986). A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204 417–423. 10.1007/bf00331018 DOI
Mengiste T., Revenkova E., Bechtold N., Paszkowski J. (1999). An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO J. 18 4505–4512. 10.1093/emboj/18.16.4505 PubMed DOI PMC
Mukhopadhyay D., Dasso M. (2017). The SUMO pathway in mitosis. Adv. Exp. Med. Biol. 963 171–184. 10.1007/978-3-319-50044-7_10 PubMed DOI PMC
Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., et al. (2010). Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 74 1315–1319. 10.1271/bbb.100184 PubMed DOI
Nasmyth K., Haering C. H. (2005). The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74 595–648. 10.1146/annurev.biochem.74.082803.133219 PubMed DOI
Nitiss J. L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9 327–337. 10.1038/nrc2608 PubMed DOI PMC
Oh S. D., Lao J. P., Hwang P. Y., Taylor A. F., Smith G. R., Hunter N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130 259–272. 10.1016/j.cell.2007.05.035 PubMed DOI PMC
Osman K., Higgins J. D., Sanchez-Moran E., Armstrong S. J., Franklin F. C. (2011). Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol. 190 523–544. 10.1111/j.1469-8137.2011.03665.x PubMed DOI
Palecek J., Vidot S., Feng M., Doherty A. J., Lehmann A. R. (2006). The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the kleisin, Nse4, and non-kleisin subunits. J. Biol. Chem. 281 36952–36959. 10.1074/jbc.M608004200 PubMed DOI
Palecek J. J., Gruber S. (2015). Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23 2183–2190. 10.1016/j.str.2015.10.004 PubMed DOI
Panchy N., Lehti-Shiu M., Shiu S. H. (2016). Evolution of Gene Duplication in Plants. Plant Physiol. 171 2294–2316. 10.1104/pp.16.00523 PubMed DOI PMC
Park H. J., Kim W. Y., Park H. C., Lee S. Y., Bohnert H. J., Yun D. J. (2011). SUMO and SUMOylation in plants. Mol. Cells 32 305–316. 10.1007/s10059-011-0122-7 PubMed DOI PMC
Paul M. R., Hochwagen A., Ercan S. (2018). Condensin action and compaction. Curr. Genet. 65 407–415. 10.1007/s00294-018-0899-4 PubMed DOI PMC
Pebernard S., McDonald W. H., Pavlova Y., Yates J. R., III, Boddy M. N. (2004). Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol. Biol. Cell 15 4866–4876. 10.1091/mbc.e04-05-0436 PubMed DOI PMC
Pebernard S., Perry J. J., Tainer J. A., Boddy M. N. (2008). Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol. Biol. Cell 19 4099–4109. 10.1091/mbc.E08-02-0226 PubMed DOI PMC
Potts P. R., Porteus M. H., Yu H. T. (2006). Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25 3377–3388. 10.1038/sj.emboj.7601218 PubMed DOI PMC
Potts P. R., Yu H. (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14 581–590. 10.1038/nsmb1259 PubMed DOI
Pryzhkova M. V., Jordan P. W. (2016). Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J. Cell Sci. 129 1619–1634. 10.1242/jcs.179036 PubMed DOI PMC
Räschle M., Smeenk G., Hansen R. K., Temu T., Oka Y., Hein M. Y., et al. (2015). Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348:1253671. 10.1126/science.1253671 PubMed DOI PMC
Rastogi S., Liberles D. A. (2005). Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5:28. 10.1186/1471-2148-5-28 PubMed DOI PMC
Rosso M. G., Li Y., Strizhov N., Reiss B., Dekker K., Weisshaar B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 53 247–259. 10.1023/B:PLAN.0000009297.37235.4a PubMed DOI
Sánchez-Morán E., Armstrong S. J., Santos J. L., Franklin F. C., Jones G. H. (2001). Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res. 9 121–128. PubMed
Schubert I., Vu G. T. H. (2016). Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 21 749–757. 10.1016/j.tplants.2016.06.003 PubMed DOI
Schubert V. (2009). SMC proteins and their multiple functions in higher plants. Cytogenet. Genome Res. 124 202–214. 10.1159/000218126 PubMed DOI
Schubert V. (2014). RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet. Genome Res. 143 69–77. 10.1159/000365233 PubMed DOI
Schubert V., Lermontova I., Schubert I. (2013). The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122 517–533. 10.1007/s00412-013-0424-y PubMed DOI
Schubert V., Weisshart K. (2015). Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J. Exp. Bot. 66 1687–1698. 10.1093/jxb/erv091 PubMed DOI PMC
Semon M., Wolfe K. H. (2007). Consequences of genome duplication. Curr. Opin. Genet. Dev. 17 505–512. 10.1016/j.gde.2007.09.007 PubMed DOI
Sergeant J., Taylor E., Palecek J., Fousteri M., Andrews E. A., Sweeney S., et al. (2005). Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol. Cell. Biol. 25 172–184. 10.1128/MCB.25.1.172-184.2005 PubMed DOI PMC
Sessions A., Burke E., Presting G., Aux G., McElver J., Patton D., et al. (2002). A high-throughput Arabidopsis reverse genetics system. Plant Cell 14 2985–2994. 10.1105/tpc.004630 PubMed DOI PMC
Sjögren C., Nasmyth K. (2001). Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11 991–995. 10.1016/S0960-9822(01)00271-8 PubMed DOI
Stephan A. K., Kliszczak M., Dodson H., Cooley C., Morrison C. G. (2011). Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell. Biol. 31 1369–1381. 10.1128/MCB.00786-10 PubMed DOI PMC
Taylor E. M., Copsey A. C., Hudson J. J. R., Vidot S., Lehmann A. R. (2008). Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol. Cell. Biol. 28 1197–1206. 10.1128/mcb.00767-07 PubMed DOI PMC
Taylor E. M., Moghraby J. S., Lees J. H., Smit B., Moens P. B., Lehmann A. R. (2001). Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell 12 1583–1594. 10.1091/mbc.12.6.1583 PubMed DOI PMC
Toby G. G., Gherraby W., Coleman T. R., Golemis E. A. (2003). A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. Mol. Cell. Biol. 23 2109–2122. 10.1128/MCB.23.6.2109-2122.2003 PubMed DOI PMC
Torres-Rosell J., De Piccoli G., Cordon-Preciado V., Farmer S., Jarmuz A., Machin F., et al. (2007a). Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315 1411–1415. 10.1126/science.1134025 PubMed DOI
Torres-Rosell J., Sunjevaric I., De Piccoli G., Sacher M., Eckert-Boulet N., Reid R., et al. (2007b). The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9 923–931. 10.1038/ncb1619 PubMed DOI
Torres-Rosell J., Machin F., Aragon L. (2005). Smc5-Smc6 complex preserves nucleolar integrity in S. cerevisiae. Cell Cycle 4 868–872. 10.4161/cc.4.7.1825 PubMed DOI
Uhlmann F., Nasmyth K. (1998). Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8 1095–1101. 10.1016/S0960-9822(98)70463-4 PubMed DOI
Ünal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J. E., et al. (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16 991–1002. 10.1016/j.molcel.2004.11.027 PubMed DOI
van der Crabben S. N., Hennus M. P., McGregor G. A., Ritter D. I., Nagamani S. C., Wells O. S., et al. (2016). Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Invest. 126 2881–2892. 10.1172/JCI82890 PubMed DOI PMC
Verver D. E., Hwang G. H., Jordan P. W., Hamer G. (2016). Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. Chromosoma 125 15–27. 10.1007/s00412-015-0518-9 PubMed DOI PMC
Verver D. E., Langedijk N. S., Jordan P. W., Repping S., Hamer G. (2014). The SMC5/6 complex is involved in crucial processes during human spermatogenesis. Biol. Reprod. 91:22. 10.1095/biolreprod.114.118596 PubMed DOI PMC
Verver D. E., van Pelt A. M., Repping S., Hamer G. (2013). Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. Cell Death Dis. 4:e749. 10.1038/cddis.2013.269 PubMed DOI PMC
Wang K., Wang M., Tang D., Shen Y., Miao C., Hu Q., et al. (2012). The role of rice HEI10 in the formation of meiotic crossovers. PLoS Genet. 8:e1002809. 10.1371/journal.pgen.1002809 PubMed DOI PMC
Wang S., Adams K. L. (2015). Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica. Genome Biol. Evol. 7 646–655. 10.1093/gbe/evv023 PubMed DOI PMC
Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21 2688–2699. 10.1105/tpc.108.060525 PubMed DOI PMC
Weisshart K., Fuchs J., Schubert V. (2016). Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules in flow-sorted Arabidopsis nuclei. Bioprotocol 6:e1725 10.21769/BioProtoc.1725 DOI
Whitby M. C. (2005). Making crossovers during meiosis. Biochem. Soc. Trans. 33 1451–1455. 10.1042/BST20051451 PubMed DOI
Xaver M., Huang L., Chen D., Klein F. (2013). Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLoS Genet. 9:e1004067. 10.1371/journal.pgen.1004067 PubMed DOI PMC
Xu P., Yuan D., Liu M., Li C., Liu Y., Zhang S., et al. (2013). AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots. Plant Physiol. 161 1755–1768. 10.1104/pp.112.208942 PubMed DOI PMC
Yan S., Wang W., Marques J., Mohan R., Saleh A., Durrant W. E., et al. (2013). Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52 602–610. 10.1016/j.molcel.2013.09.019 PubMed DOI PMC
Yong-Gonzales V., Hang L. E., Castellucci F., Branzei D., Zhao X. (2012). The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS One 7:e51540. 10.1371/journal.pone.0051540 PubMed DOI PMC
Zabrady K., Adamus M., Vondrova L., Liao C., Skoupilova H., Novakova M., et al. (2016). Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44 1064–1079. 10.1093/nar/gkv1021 PubMed DOI PMC
Zhao X., Blobel G. (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. U.S.A. 102 4777–4782. 10.1073/pnas.0500537102 PubMed DOI PMC
Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction