Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction

. 2022 Apr 19 ; 23 (9) : . [epub] 20220419

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35562893

Grantová podpora
22-00871S Czech Science Foundation

Chromatin-based processes are essential for cellular functions. Structural maintenance of chromosomes (SMCs) are evolutionarily conserved molecular machines that organize chromosomes throughout the cell cycle, mediate chromosome compaction, promote DNA repair, or control sister chromatid attachment. The SMC5/6 complex is known for its pivotal role during the maintenance of genome stability. However, a dozen recent plant studies expanded the repertoire of SMC5/6 complex functions to the entire plant sexual reproductive phase. The SMC5/6 complex is essential in meiosis, where its activity must be precisely regulated to allow for normal meiocyte development. Initially, it is attenuated by the recombinase RAD51 to allow for efficient strand invasion by the meiosis-specific recombinase DMC1. At later stages, it is essential for the normal ratio of interfering and non-interfering crossovers, detoxifying aberrant joint molecules, preventing chromosome fragmentation, and ensuring normal chromosome/sister chromatid segregation. The latter meiotic defects lead to the production of diploid male gametes in Arabidopsis SMC5/6 complex mutants, increased seed abortion, and production of triploid offspring. The SMC5/6 complex is directly involved in controlling normal embryo and endosperm cell divisions, and pioneer studies show that the SMC5/6 complex is also important for seed development and normal plant growth in cereals.

Zobrazit více v PubMed

Rosa S., Shaw P. Insights into chromatin structure and dynamics in plants. Biology. 2013;2:1378–1410. doi: 10.3390/biology2041378. PubMed DOI PMC

Doğan E.S., Liu C. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants. 2018;4:521–529. doi: 10.1038/s41477-018-0199-5. PubMed DOI

Pecinka A., Chevalier C., Colas I., Kalantidis K., Varotto S., Krugman T., Michailidis C., Vallés M.-P., Muñoz A., Pradillo M. Chromatin dynamics during interphase and cell division: Similarities and differences between model and crop plants. J. Exp. Bot. 2020;71:5205–5222. doi: 10.1093/jxb/erz457. PubMed DOI

Kawashima T., Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat. Rev. Genet. 2014;15:613–624. doi: 10.1038/nrg3685. PubMed DOI

She W., Baroux C. Chromatin dynamics during plant sexual reproduction. Front. Plant Sci. 2014;5:354. doi: 10.3389/fpls.2014.00354. PubMed DOI PMC

Baroux C., Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. Plant J. 2015;83:160–176. doi: 10.1111/tpj.12890. PubMed DOI PMC

Jeppsson K., Kanno T., Shirahige K., Sjögren C. The maintenance of chromosome structure: Positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 2014;15:601–614. doi: 10.1038/nrm3857. PubMed DOI

Uhlmann F. SMC complexes: From DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 2016;17:399–412. doi: 10.1038/nrm.2016.30. PubMed DOI

Liu C.M., McElver J., Tzafrir I., Joosen R., Wittich P., Patton D., Van Lammeren A.A.M., Meinke D. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J. 2002;29:405–415. doi: 10.1046/j.1365-313x.2002.01224.x. PubMed DOI

Díaz M., Pecinka A. Scaffolding for repair: Understanding molecular functions of the SMC5/6 complex. Genes. 2018;9:36. doi: 10.3390/genes9010036. PubMed DOI PMC

Kegel A., Sjögren C. The Smc5/6 complex: More than repair? Cold Spring Harb. Symp. Quant. Biol. 2010;75:179–187. doi: 10.1101/sqb.2010.75.047. PubMed DOI

Wu N., Yu H. The Smc complexes in DNA damage response. Cell Biosci. 2012;2:5. doi: 10.1186/2045-3701-2-5. PubMed DOI PMC

Aragón L. The Smc5/6 complex: New and old functions of the enigmatic long-distance relative. Annu. Rev. Genet. 2018;52:89–107. doi: 10.1146/annurev-genet-120417-031353. PubMed DOI

Schubert V. SMC proteins and their multiple functions in higher plants. Cytogenet. Genome Res. 2009;124:202–214. doi: 10.1159/000218126. PubMed DOI

Palecek J.J., Gruber S. Kite proteins: A superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure. 2015;23:2183–2190. doi: 10.1016/j.str.2015.10.004. PubMed DOI

Haering C.H., Gruber S. SnapShot: SMC protein complexes part i. Cell. 2016;164:326–326.e1. doi: 10.1016/j.cell.2015.12.026. PubMed DOI

Doyle J.M., Gao J., Wang J., Yang M., Potts P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 2010;39:963–974. doi: 10.1016/j.molcel.2010.08.029. PubMed DOI PMC

Kolesar P., Stejskal K., Potesil D., Murray J.M., Palecek J.J. Role of Nse1 subunit of SMC5/6 complex as a ubiquitin ligase. Cells. 2022;11:165. doi: 10.3390/cells11010165. PubMed DOI PMC

Andrews E.A., Palecek J., Sergeant J., Taylor E., Lehmann A.R., Watts F.Z. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 2005;25:185–196. doi: 10.1128/MCB.25.1.185-196.2005. PubMed DOI PMC

Potts P.R., Yu H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 2005;25:7021–7032. doi: 10.1128/MCB.25.16.7021-7032.2005. PubMed DOI PMC

Ishida T., Fujiwara S., Miura K., Stacey N., Yoshimura M., Schneider K., Adachi S., Minamisawa K., Umeda M., Sugimoto K. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell. 2009;21:2284–2297. doi: 10.1105/tpc.109.068072. PubMed DOI PMC

Huang L., Yang S., Zhang S., Liu M., Lai J., Qi Y., Shi S., Wang J., Wang Y., Xie Q., et al. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 2009;60:666–678. doi: 10.1111/j.1365-313X.2009.03992.x. PubMed DOI

García-Rodríguez N., Wong R.P., Ulrich H.D. Functions of Ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 2016;7:87. doi: 10.3389/fgene.2016.00087. PubMed DOI PMC

Meng X., Wei L., Peng X.P., Zhao X. Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication. PLoS Genet. 2019;15:e1008426. doi: 10.1371/journal.pgen.1008426. PubMed DOI PMC

Rytz T.C., Miller M.J., McLoughlin F., Augustine R.C., Marshall R.S., Juan Y., Charng Y., Scalf M., Smith L.M., Vierstra R.D. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell. 2018;30:1077–1099. doi: 10.1105/tpc.17.00993. PubMed DOI PMC

Pebernard S., Wohlschlegel J., McDonald W.H., Yates J.R., Boddy M.N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 2006;26:1617–1630. doi: 10.1128/MCB.26.8.3336.2006. PubMed DOI PMC

Leung G.P., Lee L., Schmidt T.I., Shirahige K., Kobor M.S. Rtt107 is required for recruitment of the SMC5/6 complex to DNA double strand breaks. J. Biol. Chem. 2011;286:26250–26257. doi: 10.1074/jbc.M111.235200. PubMed DOI PMC

Oravcová M., Gadaleta M.C., Nie M., Reubens M.C., Limbo O., Russell P., Boddy M.N. Brc1 promotes the focal accumulation and SUMO ligase activity of Smc5-Smc6 during replication stress. Mol. Cell. Biol. 2019;39:e00271-18. doi: 10.1128/MCB.00271-18. PubMed DOI PMC

Räschle M., Smeenk G., Hansen R.K., Temu T., Oka Y., Hein M.Y., Nagaraj N., Long D.T., Walter J.C., Hofmann K., et al. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science. 2015;348:1253671. doi: 10.1126/science.1253671. PubMed DOI PMC

Li X., Zhang Y., Clarke J.D., Li Y., Dong X. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell. 1999;98:329–339. doi: 10.1016/S0092-8674(00)81962-5. PubMed DOI

Yan S., Wang W., Marqués J., Mohan R., Saleh A., Durrant W.E., Song J., Dong X. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell. 2013;52:602–610. doi: 10.1016/j.molcel.2013.09.019. PubMed DOI PMC

Mercier R., Mézard C., Jenczewski E., Macaisne N., Grelon M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 2015;66:297–327. doi: 10.1146/annurev-arplant-050213-035923. PubMed DOI

Borde V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosom. Res. 2007;15:551–563. doi: 10.1007/s10577-007-1147-9. PubMed DOI

Mercier R., Jolivet S., Vezon D., Huppe E., Chelysheva L., Giovanni M., Nogué F., Doutriaux M.-P., Horlow C., Grelon M., et al. Two Meiotic Crossover Classes Cohabit in Arabidopsis: One Is Dependent on MER3, whereas the Other One Is Not. Curr. Biol. 2005;15:692–701. doi: 10.1016/j.cub.2005.02.056. PubMed DOI

Knoll A., Schröpfer S., Puchta H. The RTR complex as caretaker of genome stability and its unique meiotic function in plants. Front. Plant Sci. 2014;5:33. doi: 10.3389/fpls.2014.00033. PubMed DOI PMC

Lynn A., Soucek R., Börner G.V. ZMM proteins during meiosis: Crossover artists at work. Chromosom. Res. 2007;15:591–605. doi: 10.1007/s10577-007-1150-1. PubMed DOI

Chen H., He C., Wang C., Wang X., Ruan F., Yan J., Yin P., Wang Y., Yan S. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell. 2021;33:2869–2882. doi: 10.1093/plcell/koab136. PubMed DOI PMC

Xaver M., Huang L., Chen D., Klein F. Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLoS Genet. 2013;9:e1004067. doi: 10.1371/journal.pgen.1004067. PubMed DOI PMC

Zhu L., Fernández-Jiménez N., Szymanska-Lejman M., Pelé A., Underwood C.J., Serra H., Lambing C., Dluzewska J., Bieluszewski T., Pradillo M., et al. Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2021;118:e2021970118. doi: 10.1073/pnas.2021970118. PubMed DOI PMC

Yang F., Fernández-Jiménez N., Tučková M., Vrána J., Cápal P., Díaz M., Pradillo M., Pecinka A. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants. Plant Cell. 2021;33:3104–3119. doi: 10.1093/plcell/koab178. PubMed DOI PMC

Copsey A., Tang S., Jordan P.W., Blitzblau H.G., Newcombe S., Chan A.C., Newnham L., Li Z., Gray S., Herbert A.D., et al. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet. 2013;9:e1004071. doi: 10.1371/journal.pgen.1004071. PubMed DOI PMC

Lilienthal I., Kanno T., Sjögren C. Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. PLoS Genet. 2013;9:e1003898. doi: 10.1371/journal.pgen.1003898. PubMed DOI PMC

Verver D.E., Langedijk N.S.M., Jordan P.W., Repping S., Hamer G. The SMC5/6 complex is involved in crucial processes during human spermatogenesis. Biol. Reprod. 2014;91:22. doi: 10.1095/biolreprod.114.118596. PubMed DOI PMC

Potts P.R., Porteus M.H., Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 2006;25:3377–3388. doi: 10.1038/sj.emboj.7601218. PubMed DOI PMC

Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. The STRUCTURAL MAINTENANCE of CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell. 2009;21:2688–2699. doi: 10.1105/tpc.108.060525. PubMed DOI PMC

Masson J.-Y., West S.C. The Rad51 and Dmc1 recombinases: A non-identical twin relationship. Trends Biochem. Sci. 2001;26:131–136. doi: 10.1016/S0968-0004(00)01742-4. PubMed DOI

Roy M.-A., D’Amours D. DNA-binding properties of Smc6, a core component of the Smc5–6 DNA repair complex. Biochem. Biophys. Res. Commun. 2011;416:80–85. doi: 10.1016/j.bbrc.2011.10.149. PubMed DOI

Roy M.-A., Siddiqui N., D’Amours D. Dynamic and selective DNA-binding activity of Smc5, a core component of the Smc5-Smc6 complex. Cell Cycle. 2011;10:690–700. doi: 10.4161/cc.10.4.14860. PubMed DOI

Cromer L., Heyman J., Touati S., Harashima H., Araou E., Girard C., Horlow C., Wassmann K., Schnittger A., De Veylder L., et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet. 2012;8:e1002865. doi: 10.1371/journal.pgen.1002865. PubMed DOI PMC

De Jaeger-Braet J., Krause L., Buchholz A., Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. Plant Cell. 2022;34:433–454. doi: 10.1093/plcell/koab257. PubMed DOI PMC

Zou W., Li G., Jian L., Qian J., Liu Y., Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. J. Exp. Bot. 2021;72:4871–4887. doi: 10.1093/jxb/erab181. PubMed DOI

Li G., Zou W., Jian L., Qian J., Deng Y., Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. J. Exp. Bot. 2017;68:1039–1054. doi: 10.1093/jxb/erx016. PubMed DOI PMC

Li G., Zou W., Jian L., Qian J., Zhao J. AtNSE1 and AtNSE3 are required for embryo pattern formation and maintenance of cell viability during Arabidopsis embryogenesis. J. Exp. Bot. 2019;70:6229–6244. doi: 10.1093/jxb/erz373. PubMed DOI PMC

Yang F., Fernández Jiménez N., Majka J., Pradillo M., Pecinka A. Structural maintenance of chromosomes 5/6 complex is necessary for tetraploid genome stability in Arabidopsis thaliana. Front. Plant Sci. 2021;12:2139. doi: 10.3389/fpls.2021.748252. PubMed DOI PMC

Liu M., Shi S., Zhang S., Xu P., Lai J., Liu Y., Yuan D., Wang Y., Du J., Yang C. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biol. 2014;14:153. doi: 10.1186/1471-2229-14-153. PubMed DOI PMC

Díaz M., Pečinková P., Nowicka A., Baroux C., Sakamoto T., Yuliani Gandha P., Jeřábková H., Matsunaga S., Grossniklaus U., Pecinka A. The SMC5/6 complex subunit NSE4A is involved in DNA damage repair and seed development in Arabidopsis. Plant Cell. 2019;31:1579–1597. doi: 10.1105/tpc.18.00043. PubMed DOI PMC

Zhang J., Augustine R.C., Suzuki M., Feng J., Char S.N., Yang B., McCarty D.R., Vierstra R.D. The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genet. 2021;17:e1009830. doi: 10.1371/journal.pgen.1009830. PubMed DOI PMC

Jiang J., Xie Y., Du J., Yang C., Lai J. A SUMO ligase OsMMS21 regulates rice development and auxin response. J. Plant Physiol. 2021;263:153447. doi: 10.1016/j.jplph.2021.153447. PubMed DOI

Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI

Grandont L., Jenczewski E., Lloyd A. Meiosis and Its Deviations in Polyploid Plants. Cytogenet. Genome Res. 2013;140:171–184. doi: 10.1159/000351730. PubMed DOI

Zelkowski M., Zelkowska K., Conrad U., Hesse S., Lermontova I., Marzec M., Meister A., Houben A., Schubert V. Arabidopsis NSE4 proteins act in somatic nuclei and meiosis to ensure plant viability and fertility. Front. Plant Sci. 2019;10:774. doi: 10.3389/fpls.2019.00774. PubMed DOI PMC

Chaudhury A.M., Koltunow A., Payne T., Luo M., Tucker M.R., Dennis E.S., Peacock W.J. Control of early seed development. Annu. Rev. Cell Dev. Biol. 2001;17:677–699. doi: 10.1146/annurev.cellbio.17.1.677. PubMed DOI

Adams S., Vinkenoog R., Spielman M., Dickinson H.G., Scott R.J. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development. 2000;127:2493–2502. doi: 10.1242/dev.127.11.2493. PubMed DOI

Liu C.M., Meinke D.W. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J. 1998;16:21–31. doi: 10.1046/j.1365-313x.1998.00268.x. PubMed DOI

Tzafrir I., Mcelver J.A., Liu C., Yang L.J., Wu J.Q., Martinez A., Patton D.A., Meinke D.W., Oklahoma I.T. Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol. 2002;74078:38–51. doi: 10.1104/pp.010911. PubMed DOI PMC

Wang L., Chen H., Wang C., Hu Z., Yan S. Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc. Natl. Acad. Sci. USA. 2018;115:E3837–E3845. doi: 10.1073/pnas.1720094115. PubMed DOI PMC

The Arabidopsis Genome Initiative Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI

Hoencamp C., Dudchenko O., Elbatsh A.M.O., Brahmachari S., Raaijmakers J.A., van Schaik T., Cacciatore Á.S., Contessoto V.G., van Heesbeen R.G., van den Broek B., et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021;372:984–989. doi: 10.1126/science.abe2218. PubMed DOI PMC

Schnable P.S., Ware D.H., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L.L., Graves T., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace