Formulation and Evaluation of Novel Film Wound Dressing Based on Collagen/Microfibrillated Carboxymethylcellulose Blend
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04020540
Technology Agency of the Czech Republic
304/2019/FaF
IGA VFU Brno
PubMed
35456616
PubMed Central
PMC9027540
DOI
10.3390/pharmaceutics14040782
PII: pharmaceutics14040782
Knihovny.cz E-zdroje
- Klíčová slova
- blend films, collagen, film wound dressing, microfibrillated carboxymethylcellulose, solvent casting method, wound healing,
- Publikační typ
- časopisecké články MeSH
Collagen is essential as a physiological material in wound healing, so it is often used in wound management, mainly as a lyophilisate. Collagen also has excellent film-forming properties; unfortunately, however, its utilisation as a film wound dressing is limited because of its weak mechanical properties, especially in its wet state. For this reason, modifications or combinations with different materials are investigated. The combination of collagen with partially modified microfibrillar carboxymethylcellulose (CMC), which has not previously been described, provided a new possibility for strengthening collagen films and was the aim of this work. The collagen-CMC films based on three types of collagens, two plasticizers and two collagen. Plasticiser ratios were prepared using the solvent casting method; partially modified CMC served here as both a film-forming agent and a filler, without compromising the transparency of the films. The presence of microfibrils was confirmed microscopically by SEM. Organoleptic and physicochemical evaluation, especially in terms of practical application on wounds, demonstrated that all the samples had satisfactory properties for this purpose even after wetting. All the films retained acidic pH values even after 24 h, with a maximum of 6.27 ± 0.17, and showed a mild degree of swelling, with a maximum of about 6 after 24 h.
Zobrazit více v PubMed
Sharma S., Rai V.K., Narang R.K., Markandeywar T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022;290:120096. doi: 10.1016/j.lfs.2021.120096. PubMed DOI
León-Lopéz A., Morales-Peñaloza A., Martinéz-Juaréz V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. Hydrolyzed collagen—Sources and applications. Molecules. 2019;24:4031. doi: 10.3390/molecules24224031. PubMed DOI PMC
Zhang M., Ding C., Yang J., Lin S., Chen L., Huang L. Study of interaction between water-soluble collagen and carboxymethyl cellulose in neutral aqueous solution. Carbohydr. Polym. 2016;137:410–441. doi: 10.1016/j.carbpol.2015.10.098. PubMed DOI
Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers. 2021;13:3868. doi: 10.3390/polym13223868. PubMed DOI PMC
Yang Y., Li C., Song W., Wang W., Qian G. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 2016;89:344–352. doi: 10.1016/j.ijbiomac.2016.04.048. PubMed DOI
Ding C., Zhang C., Li G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr. Polym. 2015;119:194–201. doi: 10.1016/j.carbpol.2014.11.057. PubMed DOI
Harding K.G. Role of collagen in wound management. Wounds UK. 2011;7:54–63.
Hochstain A.O., Bhatia A. Collagen: Its role in wound healing. Wound Manag. 2014;4:104–109.
Fleck C.A., Simman R. Modern collagen wound dressings: Function and purpose. J. Am. Col. Certif. Wound Spec. 2010;2:50–54. doi: 10.1016/j.jcws.2010.12.003. PubMed DOI PMC
Gould L.J. Topical collagen-based biomaterials for chronic wounds: Rationale and clinical application. Adv. Wound Care. 2016;5:19–31. doi: 10.1089/wound.2014.0595. PubMed DOI PMC
Bohn G., Liden B., Schultz G., Yang Q., Gibson D.J. Ovine-based collagen matrix dressing: Next-generation collagen dressing for wound care. Adv. Wound Care. 2016;5:1–10. doi: 10.1089/wound.2015.0660. PubMed DOI PMC
Turner N.J., Badylak S.F. The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv. Wound Care. 2015;4:490–500. doi: 10.1089/wound.2014.0604. PubMed DOI PMC
Ramanathan G., Muthukumar T., Tirichurapalli Sivagnanam U. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur. J. Pharmacol. 2017;814:45–55. doi: 10.1016/j.ejphar.2017.08.003. PubMed DOI
Sussman G. Technology update: Understanding film dressings. Int. Wound J. 2010;1:23–25.
Gultekin G., Atalay-Oral C., Erkal S., Sahin F., Karastova D., Tantekin-Ersolmaz S.B., Guner F.S. Fatty acid-based polyurethane films for wound dressing applications. J. Mater. Sci. Mater. Med. 2009;20:421–431. doi: 10.1007/s10856-008-3572-5. PubMed DOI
Vinklárková L., Masteiková R., Vetchý D., Doležel P., Bernatoniené J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. Biomed Res. Int. 2015;2015:892671. doi: 10.1155/2015/892671. PubMed DOI PMC
Wu X., Luo Y., Liu Q., Jiang S., Mu G. Improved structure-stability and packaging characters of crosslinked collagen fiber-based film with casein, keratin and SPI. J. Sci. Food Agric. 2019;99:4942–4951. doi: 10.1002/jsfa.9726. PubMed DOI
Wang W., Wang Y., Wang Y., Zhang X., Wang X., Gao G. Fabrication and characterization of microfibrillated cellulose and collagen composite films. J. Bioresour. Bioprod. 2016;1:162–168.
Rýglová Š., Braun M., Suchý T. Collagen and its modifications—Crucial aspects with concern to its processing and analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI
Gu L., Shan T., Ma Y., Tay F.R., Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37:464–491. doi: 10.1016/j.tibtech.2018.10.007. PubMed DOI
Wang W., Liu Y., Liu A., Xiao J., Wang K., Zhao Y., Zhang S., Zhang L. Fabrication of acid-swollen collagen fiber-based composite films: Effect of nano-hydroxyapatite on packaging related properties. Int. J. Food Prop. 2016;20:968–978. doi: 10.1080/10942912.2016.1190745. DOI
Juncu G., Stoica-Guzun A., Stroescu M., Isopencu G., Jinga S.I. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int. J. Pharm. 2016;510:485–492. doi: 10.1016/j.ijpharm.2015.11.053. PubMed DOI
Vinklárková L., Masteiková R., Foltýnová G., Muselík J., Pavloková S., Bernatonienė J., Vetchý D. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J. Appl. Biomed. 2017;15:313–320. doi: 10.1016/j.jab.2017.08.002. DOI
Kanikireddy V., Varaprasad K., Jayaramudu T., Karthiekeyan C., Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int. J. Biol. Macromol. 2020;164:963–975. doi: 10.1016/j.ijbiomac.2020.07.160. PubMed DOI
Tenorová K., Masteiková R., Kovárová N., Kostelanská K., Přikryl J., Vetchý D., Bernatonienė J. Preparation and evaluation of bilayer films based on collagen and carboxymethylcellulose for wound therapy. Ceska Slov. Farm. 2019;68:229–236. PubMed
Tenorová K., Masteiková R., Jarábková J., Vetchý D., Bernatonienė J. Collagen in combination with the acid form of carboxymethylcellulose in the form of a non-woven textile as a modern wound dressing—Formulation, preparation and evaluation. Ceska Slov. Farm. 2020;69:163–171. PubMed
Priya B., Gupta V.K., Pathania D., Singha A.S. Synthesis, characterization, and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym. 2014;109:171–179. doi: 10.1016/j.carbpol.2014.03.044. PubMed DOI
Telis V., Wolf K., Sobral P. Characterizations of Collagen Fibers for Biodegradable Films Production; Proceedings of the 13th World Congress of Food Science & Technology; Nantes, France. 17–21 September 2006.
European Pharmacopoeia Commision . European Pharmacopoeia. 9th ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2017.
Core R. Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Savencu I., Iurian S., Porfire A., Bogdan C., Tomuta I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 2021;168:105059. doi: 10.1016/j.reactfunctpolym.2021.105059. DOI
Saghazadeh S., Rinoldi C., Schot M., Kashaf S.S., Sharifi F., Jalilian E., Nuutila K., Giatsidis G., Mostafalu P., Derakhshandeh H. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018;127:138–166. doi: 10.1016/j.addr.2018.04.008. PubMed DOI PMC
Waring M., Butcher M. An investigation into the conformability of wound dressings. Wounds UK. 2011;7:14–24.
Liu X., Xu H., Zhang M., Yu D. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes. 2021;11:770. doi: 10.3390/membranes11100770. PubMed DOI PMC
Contardi M., Lenzuni M., Fiorentini F., Summa M., Bertorelli R., Suarato G., Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics. 2021;13:999. doi: 10.3390/pharmaceutics13070999. PubMed DOI PMC
Oluwatosin Abegunde O., Titilayo Akinlabi E., Philip Oladijo O., Akinlabi S., Uchenna Ude A. Overview of thin film deposition techniques. AIMS Mater. Sci. 2019;6:174–199. doi: 10.3934/matersci.2019.2.174. DOI
Elbl J., Gajdziok J., Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI
Derwin R., Patton D., Avsar P., Strapp H., Moore Z. The impact of topical agents and dressing on pH and temperature on wound healing: A systematic, narrative review. Int. Wound J. 2021:1–12. doi: 10.1111/iwj.13733. PubMed DOI PMC
Jones E.M., Cochrane C.A., Percival S.L. The Effect of pH on the Extracellular Matrix and Biofilms. Adv. Wound Care. 2015;4:431–439. doi: 10.1089/wound.2014.0538. PubMed DOI PMC
Nagoba B.S., Suryawanshi N.M., Wadher B., Selkar S. Acidic environment and wound healing: A review. Wounds. 2015;27:5–11.
Metcalf D.G., Haalboom M., Bowler P.G., Gamerith C., Sigl E., Heinzle A., Burnet M.W.M. Elevated wound fluid pH correlates with increased risk of wound infection. Wound Med. 2019;26:100166. doi: 10.1016/j.wndm.2019.100166. DOI
Pišlová M., Kolárová K., Vosmanská V., Kvítek O., Švorcík V. Preparation of 9 polysaccharide films based on chitosan and cellulose. Chem. Listy. 2015;109:942–945.
Tenorová K., Masteiková R., Kostelanská K., Vetchý D. Film wound dressing containing dexpanthenol—Preparation and evaluation. Ceska Slov. Farm. 2019;68:27–33. PubMed
Power G., Moore Z., O’Connor T. Measurement of pH, exudate composition and temperature in wound healing: A systematic review. J Wound Care. 2017;26:381–397. doi: 10.12968/jowc.2017.26.7.381. PubMed DOI
Azarea A.I., Alruwaili N.K., Ahmad M.M., Munir M.U., Butt A.M., Alrowaili Z.A., Bin Shahari M.S., Almalki Z.S., Alqahtani S.S., Dolzhenko A.V. Development and Characterization of Gentamicin-Loaded Arabinoxylan-Sodium Alginate Films as Antibacterial Wound Dressing. Int. J. Mol. Sci. 2022;23:2899. doi: 10.3390/ijms23052899. PubMed DOI PMC
Paunonen S. Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources. 2013;8:3098–3121. doi: 10.15376/biores.8.2.3098-3121. DOI
Schmitz M., Mustafi N., Rogmans S., Kasparek S. Pilot-study switchable film dressing & elderly skin/patients with chronic wounds: A non-interventional, non-placebo-controlled, national pilot study. Wound Med. 2020;30:100189. doi: 10.1016/j.wndm.2020.100189. DOI
Simi C.K., Abraham T.E. Biodegradable biocompatible xyloglucan films for various applications. Colloid Polym. Sci. 2010;288:297–306. doi: 10.1007/s00396-009-2151-8. DOI
Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI