Formulation and Evaluation of Novel Film Wound Dressing Based on Collagen/Microfibrillated Carboxymethylcellulose Blend

. 2022 Apr 03 ; 14 (4) : . [epub] 20220403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456616

Grantová podpora
TH04020540 Technology Agency of the Czech Republic
304/2019/FaF IGA VFU Brno

Odkazy

PubMed 35456616
PubMed Central PMC9027540
DOI 10.3390/pharmaceutics14040782
PII: pharmaceutics14040782
Knihovny.cz E-zdroje

Collagen is essential as a physiological material in wound healing, so it is often used in wound management, mainly as a lyophilisate. Collagen also has excellent film-forming properties; unfortunately, however, its utilisation as a film wound dressing is limited because of its weak mechanical properties, especially in its wet state. For this reason, modifications or combinations with different materials are investigated. The combination of collagen with partially modified microfibrillar carboxymethylcellulose (CMC), which has not previously been described, provided a new possibility for strengthening collagen films and was the aim of this work. The collagen-CMC films based on three types of collagens, two plasticizers and two collagen. Plasticiser ratios were prepared using the solvent casting method; partially modified CMC served here as both a film-forming agent and a filler, without compromising the transparency of the films. The presence of microfibrils was confirmed microscopically by SEM. Organoleptic and physicochemical evaluation, especially in terms of practical application on wounds, demonstrated that all the samples had satisfactory properties for this purpose even after wetting. All the films retained acidic pH values even after 24 h, with a maximum of 6.27 ± 0.17, and showed a mild degree of swelling, with a maximum of about 6 after 24 h.

Zobrazit více v PubMed

Sharma S., Rai V.K., Narang R.K., Markandeywar T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022;290:120096. doi: 10.1016/j.lfs.2021.120096. PubMed DOI

León-Lopéz A., Morales-Peñaloza A., Martinéz-Juaréz V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. Hydrolyzed collagen—Sources and applications. Molecules. 2019;24:4031. doi: 10.3390/molecules24224031. PubMed DOI PMC

Zhang M., Ding C., Yang J., Lin S., Chen L., Huang L. Study of interaction between water-soluble collagen and carboxymethyl cellulose in neutral aqueous solution. Carbohydr. Polym. 2016;137:410–441. doi: 10.1016/j.carbpol.2015.10.098. PubMed DOI

Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers. 2021;13:3868. doi: 10.3390/polym13223868. PubMed DOI PMC

Yang Y., Li C., Song W., Wang W., Qian G. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 2016;89:344–352. doi: 10.1016/j.ijbiomac.2016.04.048. PubMed DOI

Ding C., Zhang C., Li G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr. Polym. 2015;119:194–201. doi: 10.1016/j.carbpol.2014.11.057. PubMed DOI

Harding K.G. Role of collagen in wound management. Wounds UK. 2011;7:54–63.

Hochstain A.O., Bhatia A. Collagen: Its role in wound healing. Wound Manag. 2014;4:104–109.

Fleck C.A., Simman R. Modern collagen wound dressings: Function and purpose. J. Am. Col. Certif. Wound Spec. 2010;2:50–54. doi: 10.1016/j.jcws.2010.12.003. PubMed DOI PMC

Gould L.J. Topical collagen-based biomaterials for chronic wounds: Rationale and clinical application. Adv. Wound Care. 2016;5:19–31. doi: 10.1089/wound.2014.0595. PubMed DOI PMC

Bohn G., Liden B., Schultz G., Yang Q., Gibson D.J. Ovine-based collagen matrix dressing: Next-generation collagen dressing for wound care. Adv. Wound Care. 2016;5:1–10. doi: 10.1089/wound.2015.0660. PubMed DOI PMC

Turner N.J., Badylak S.F. The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv. Wound Care. 2015;4:490–500. doi: 10.1089/wound.2014.0604. PubMed DOI PMC

Ramanathan G., Muthukumar T., Tirichurapalli Sivagnanam U. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur. J. Pharmacol. 2017;814:45–55. doi: 10.1016/j.ejphar.2017.08.003. PubMed DOI

Sussman G. Technology update: Understanding film dressings. Int. Wound J. 2010;1:23–25.

Gultekin G., Atalay-Oral C., Erkal S., Sahin F., Karastova D., Tantekin-Ersolmaz S.B., Guner F.S. Fatty acid-based polyurethane films for wound dressing applications. J. Mater. Sci. Mater. Med. 2009;20:421–431. doi: 10.1007/s10856-008-3572-5. PubMed DOI

Vinklárková L., Masteiková R., Vetchý D., Doležel P., Bernatoniené J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. Biomed Res. Int. 2015;2015:892671. doi: 10.1155/2015/892671. PubMed DOI PMC

Wu X., Luo Y., Liu Q., Jiang S., Mu G. Improved structure-stability and packaging characters of crosslinked collagen fiber-based film with casein, keratin and SPI. J. Sci. Food Agric. 2019;99:4942–4951. doi: 10.1002/jsfa.9726. PubMed DOI

Wang W., Wang Y., Wang Y., Zhang X., Wang X., Gao G. Fabrication and characterization of microfibrillated cellulose and collagen composite films. J. Bioresour. Bioprod. 2016;1:162–168.

Rýglová Š., Braun M., Suchý T. Collagen and its modifications—Crucial aspects with concern to its processing and analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI

Gu L., Shan T., Ma Y., Tay F.R., Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37:464–491. doi: 10.1016/j.tibtech.2018.10.007. PubMed DOI

Wang W., Liu Y., Liu A., Xiao J., Wang K., Zhao Y., Zhang S., Zhang L. Fabrication of acid-swollen collagen fiber-based composite films: Effect of nano-hydroxyapatite on packaging related properties. Int. J. Food Prop. 2016;20:968–978. doi: 10.1080/10942912.2016.1190745. DOI

Juncu G., Stoica-Guzun A., Stroescu M., Isopencu G., Jinga S.I. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int. J. Pharm. 2016;510:485–492. doi: 10.1016/j.ijpharm.2015.11.053. PubMed DOI

Vinklárková L., Masteiková R., Foltýnová G., Muselík J., Pavloková S., Bernatonienė J., Vetchý D. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J. Appl. Biomed. 2017;15:313–320. doi: 10.1016/j.jab.2017.08.002. DOI

Kanikireddy V., Varaprasad K., Jayaramudu T., Karthiekeyan C., Sadiku R. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int. J. Biol. Macromol. 2020;164:963–975. doi: 10.1016/j.ijbiomac.2020.07.160. PubMed DOI

Tenorová K., Masteiková R., Kovárová N., Kostelanská K., Přikryl J., Vetchý D., Bernatonienė J. Preparation and evaluation of bilayer films based on collagen and carboxymethylcellulose for wound therapy. Ceska Slov. Farm. 2019;68:229–236. PubMed

Tenorová K., Masteiková R., Jarábková J., Vetchý D., Bernatonienė J. Collagen in combination with the acid form of carboxymethylcellulose in the form of a non-woven textile as a modern wound dressing—Formulation, preparation and evaluation. Ceska Slov. Farm. 2020;69:163–171. PubMed

Priya B., Gupta V.K., Pathania D., Singha A.S. Synthesis, characterization, and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym. 2014;109:171–179. doi: 10.1016/j.carbpol.2014.03.044. PubMed DOI

Telis V., Wolf K., Sobral P. Characterizations of Collagen Fibers for Biodegradable Films Production; Proceedings of the 13th World Congress of Food Science & Technology; Nantes, France. 17–21 September 2006.

European Pharmacopoeia Commision . European Pharmacopoeia. 9th ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2017.

Core R. Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.

Savencu I., Iurian S., Porfire A., Bogdan C., Tomuta I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 2021;168:105059. doi: 10.1016/j.reactfunctpolym.2021.105059. DOI

Saghazadeh S., Rinoldi C., Schot M., Kashaf S.S., Sharifi F., Jalilian E., Nuutila K., Giatsidis G., Mostafalu P., Derakhshandeh H. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018;127:138–166. doi: 10.1016/j.addr.2018.04.008. PubMed DOI PMC

Waring M., Butcher M. An investigation into the conformability of wound dressings. Wounds UK. 2011;7:14–24.

Liu X., Xu H., Zhang M., Yu D. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes. 2021;11:770. doi: 10.3390/membranes11100770. PubMed DOI PMC

Contardi M., Lenzuni M., Fiorentini F., Summa M., Bertorelli R., Suarato G., Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics. 2021;13:999. doi: 10.3390/pharmaceutics13070999. PubMed DOI PMC

Oluwatosin Abegunde O., Titilayo Akinlabi E., Philip Oladijo O., Akinlabi S., Uchenna Ude A. Overview of thin film deposition techniques. AIMS Mater. Sci. 2019;6:174–199. doi: 10.3934/matersci.2019.2.174. DOI

Elbl J., Gajdziok J., Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI

Derwin R., Patton D., Avsar P., Strapp H., Moore Z. The impact of topical agents and dressing on pH and temperature on wound healing: A systematic, narrative review. Int. Wound J. 2021:1–12. doi: 10.1111/iwj.13733. PubMed DOI PMC

Jones E.M., Cochrane C.A., Percival S.L. The Effect of pH on the Extracellular Matrix and Biofilms. Adv. Wound Care. 2015;4:431–439. doi: 10.1089/wound.2014.0538. PubMed DOI PMC

Nagoba B.S., Suryawanshi N.M., Wadher B., Selkar S. Acidic environment and wound healing: A review. Wounds. 2015;27:5–11.

Metcalf D.G., Haalboom M., Bowler P.G., Gamerith C., Sigl E., Heinzle A., Burnet M.W.M. Elevated wound fluid pH correlates with increased risk of wound infection. Wound Med. 2019;26:100166. doi: 10.1016/j.wndm.2019.100166. DOI

Pišlová M., Kolárová K., Vosmanská V., Kvítek O., Švorcík V. Preparation of 9 polysaccharide films based on chitosan and cellulose. Chem. Listy. 2015;109:942–945.

Tenorová K., Masteiková R., Kostelanská K., Vetchý D. Film wound dressing containing dexpanthenol—Preparation and evaluation. Ceska Slov. Farm. 2019;68:27–33. PubMed

Power G., Moore Z., O’Connor T. Measurement of pH, exudate composition and temperature in wound healing: A systematic review. J Wound Care. 2017;26:381–397. doi: 10.12968/jowc.2017.26.7.381. PubMed DOI

Azarea A.I., Alruwaili N.K., Ahmad M.M., Munir M.U., Butt A.M., Alrowaili Z.A., Bin Shahari M.S., Almalki Z.S., Alqahtani S.S., Dolzhenko A.V. Development and Characterization of Gentamicin-Loaded Arabinoxylan-Sodium Alginate Films as Antibacterial Wound Dressing. Int. J. Mol. Sci. 2022;23:2899. doi: 10.3390/ijms23052899. PubMed DOI PMC

Paunonen S. Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources. 2013;8:3098–3121. doi: 10.15376/biores.8.2.3098-3121. DOI

Schmitz M., Mustafi N., Rogmans S., Kasparek S. Pilot-study switchable film dressing & elderly skin/patients with chronic wounds: A non-interventional, non-placebo-controlled, national pilot study. Wound Med. 2020;30:100189. doi: 10.1016/j.wndm.2020.100189. DOI

Simi C.K., Abraham T.E. Biodegradable biocompatible xyloglucan films for various applications. Colloid Polym. Sci. 2010;288:297–306. doi: 10.1007/s00396-009-2151-8. DOI

Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...