The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36807739
PubMed Central
PMC10018352
DOI
10.1093/nar/gkad085
PII: 7049327
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus * MeSH
- lidé MeSH
- MCM komplex, komponenta 2 * genetika metabolismus MeSH
- MCM proteiny metabolismus MeSH
- myši MeSH
- nádory * MeSH
- proteiny buněčného cyklu metabolismus MeSH
- receptor pro konečné produkty pokročilé glykace * metabolismus MeSH
- replikace DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MCM komplex, komponenta 2 * MeSH
- MCM proteiny MeSH
- MCM2 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- receptor pro konečné produkty pokročilé glykace * MeSH
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
European Molecular Biology Laboratory Advanced Light Microscopy Facility Heidelberg Germany
German Center of Diabetes Research Neuherberg Germany
Institute for Immunology University Hospital of Heidelberg INF 305 Heidelberg Germany
Institute of Molecular Cancer Research University of Zurich 8057 Zurich Switzerland
Zobrazit více v PubMed
Gardner A.F., Kelman Z.. Editorial: the DNA replication machinery as therapeutic targets. Front. Mol. Biosci. 2019; 6:35. PubMed PMC
Hao J., Zhu W.. Maintain genomic stability: multitask of DNA replication proteins. Transcr Open Access. 2015; 3: PubMed PMC
Blow J.J. Defects in the origin licensing checkpoint stresses cells exiting G0. J. Cell Biol. 2019; 218:2080–2081. PubMed PMC
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr. Opin. Struct. Biol. 2019; 59:195–204. PubMed
Zeman M.K., Cimprich K.A.. Causes and consequences of replication stress. Nat. Cell Biol. 2014; 16:2–9. PubMed PMC
Cimprich K.A., Cortez D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008; 9:616–627. PubMed PMC
Choi H.J., Lin J.R., Vannier J.B., Slaats G.G., Kile A.C., Paulsen R.D., Manning D.K., Beier D.R., Giles R.H., Boulton S.J.et al. .. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell. 2013; 51:423–439. PubMed PMC
Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst.). 2015; 32:149–157. PubMed PMC
D’Angiolella V., Guardavaccaro D. Two paths to let the replisome go. Cell Death Differ. 2017; 24:1140–1141. PubMed PMC
Yoo H.Y., Shevchenko A., Shevchenko A., Dunphy W.G.. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 2004; 279:53353–53364. PubMed
Bierhaus A., Humpert P.M., Morcos M., Wendt T., Chavakis T., Arnold B., Stern D.M., Nawroth P.P.. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl.). 2005; 83:876–886. PubMed
Kumar V., Fleming T., Terjung S., Gorzelanny C., Gebhardt C., Agrawal R., Mall M.A., Ranzinger J., Zeier M., Madhusudhan T.et al. .. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res. 2017; 45:10595–10613. PubMed PMC
Kumar V., Agrawal R., Pandey A., Kopf S., Hoeffgen M., Kaymak S., Bandapalli O.R., Gorbunova V., Seluanov A., Mall M.A.et al. .. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J. 2020; 39:e103477. PubMed PMC
Madhavan B.K., Han Z., Singh B., Bordt N., Kaymak S., Bandapalli O.R., Kihm L., Shahzad K., Isermann B., Herzig S.et al. .. Elevated expression of the RAGE variant-V in SCLC mitigates the effect of chemotherapeutic drugs. Cancers (Basel). 2021; 13:2843. PubMed PMC
Madhavan B.K., Han Z., Sickmann A., Pepperkok R., Nawroth P.P., Kumar V.. A laser-mediated photo-manipulative toolbox for generation and real-time monitoring of DNA lesions. STAR Protoc. 2021; 2:100700. PubMed PMC
Soutoglou E., Misteli T.. Activation of the cellular DNA damage response in the absence of DNA lesions. Science. 2008; 320:1507–1510. PubMed PMC
Han Z., Madhavan B.K., Kaymak S., Nawroth P., Kumar V.. A fast and reliable method to generate pure, single cell-derived clones of mammalian cells. Bio. Protoc. 2022; 12:e4490. PubMed PMC
Chevallet M., Luche S., Rabilloud T.. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 2006; 1:1852–1858. PubMed PMC
Ying S., Minocherhomji S., Chan K.L., Palmai-Pallag T., Chu W.K., Wass T., Mankouri H.W., Liu Y., Hickson I.D.. MUS81 promotes common fragile site expression. Nat. Cell Biol. 2013; 15:1001–1007. PubMed
Deshpande D., Agarwal N., Fleming T., Gaveriaux-Ruff C., Klose C.S.N., Tappe-Theodor A., Kuner R., Nawroth P.. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat. Commun. 2021; 12:426. PubMed PMC
Chappidi N., Nascakova Z., Boleslavska B., Zellweger R., Isik E., Andrs M., Menon S., Dobrovolna J., Balbo Pogliano C., Matos J.et al. .. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol. Cell. 2020; 77:528–541. PubMed
Kim S.Y., Hakoshima T.. GST pull-down assay to measure complex formations. Methods Mol. Biol. 2019; 1893:273–280. PubMed
Kao S.H., Wang W.L., Chen C.Y., Chang Y.L., Wu Y.Y., Wang Y.T., Wang S.P., Nesvizhskii A.I., Chen Y.J., Hong T.M.et al. .. Analysis of protein stability by the cycloheximide chase assay. Bio Protoc. 2015; 5:e1374. PubMed PMC
Hofmann M.A., Schiekofer S., Kanitz M., Klevesath M.S., Joswig M., Lee V., Morcos M., Tritschler H., Ziegler R., Wahl P.et al. .. Insufficient glycemic control increases nuclear factor-kappa B binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes. Diabetes Care. 1998; 21:1310–1316. PubMed
Bierhaus A., Schiekofer S., Schwaninger M., Andrassy M., Humpert P.M., Chen J., Hong M., Luther T., Henle T., Kloting I.et al. .. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes. 2001; 50:2792–2808. PubMed
Zhou W., Otto E.A., Cluckey A., Airik R., Hurd T.W., Chaki M., Diaz K., Lach F.P., Bennett G.R., Gee H.Y.et al. .. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 2012; 44:910–915. PubMed PMC
Constien R., Forde A., Liliensiek B., Grone H.J., Nawroth P., Hammerling G., Arnold B.. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis. 2001; 30:36–44. PubMed
Bolte S., Cordelieres F.P.. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006; 224:213–232. PubMed
Manders E.M.M., Verbeek F.J., Aten J.A.. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 1993; 169:375–382. PubMed
Dunn K.W., Kamocka M.M., McDonald J.H.. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011; 300:C723–C742. PubMed PMC
Branzei D., Foiani M.. Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst.). 2007; 6:994–1003. PubMed
Shapiro R., Cohen B.I., Shiuey S.J., Maurer H.. On the reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. A new synthesis of N2-alkylguanines. Biochemistry. 1969; 8:238–245. PubMed
Tsai K.Y.F., Tullis B., Breithaupt K.L., Fowers R., Jones N., Grajeda S., Reynolds P.R., Arroyo J.A.. A role for RAGE in DNA double strand breaks (DSBs) detected in pathological placentas and trophoblast cells. Cells. 2021; 10:857. PubMed PMC
Kilic S., Lezaja A., Gatti M., Bianco E., Michelena J., Imhof R., Altmeyer M.. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 2019; 38:e101379. PubMed PMC
Spegg V., Altmeyer M.. Biomolecular condensates at sites of DNA damage: more than just a phase. DNA Repair (Amst.). 2021; 106:103179. PubMed PMC
Pike J.A., Styles I.B., Rappoport J.Z., Heath J.K.. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods. 2017; 115:42–54. PubMed
Harrigan J.A., Belotserkovskaya R., Coates J., Dimitrova D.S., Polo S.E., Bradshaw C.R., Fraser P., Jackson S.P.. Replication stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol. 2011; 193:97–108. PubMed PMC
Ibarra A., Schwob E., Mendez J.. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. U. S. A. 2008; 105:8956–8961. PubMed PMC
Pellettieri J., Sanchez Alvarado A.. Cell turnover and adult tissue homeostasis: from humans to planarians. Annu. Rev. Genet. 2007; 41:83–105. PubMed
Ogrodnik M., Salmonowicz H., Gladyshev V.N.. Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell. 2019; 18:e12841. PubMed PMC
Isnard P., Rabant M., Labaye J., Antignac C., Knebelmann B., Zaidan M.. Karyomegalic interstitial nephritis: a case report and review of the literature. Medicine (Baltimore). 2016; 95:e3349. PubMed PMC
Maaroufi K., Zakhama A., Baudrimont I., Achour A., Abid S., Ellouz F., Dhouib S., Creppy E.E., Bacha H.. Karyomegaly of tubular cells as early stage marker of the nephrotoxicity induced by ochratoxin A in rats. Hum. Exp. Toxicol. 1999; 18:410–415. PubMed
Bierhaus A., Fleming T., Stoyanov S., Leffler A., Babes A., Neacsu C., Sauer S.K., Eberhardt M., Schnolzer M., Lasitschka F.et al. .. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 2012; 18:926–933. PubMed
Mulderrig L., Garaycoechea J.I., Tuong Z.K., Millington C.L., Dingler F.A., Ferdinand J.R., Gaul L., Tadross J.A., Arends M.J., O’Rahilly S.et al. .. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature. 2021; 600:158–163. PubMed
Li T., Wei Y., Qu M., Mou L., Miao J., Xi M., Liu Y., He R.. Formaldehyde and de/methylation in age-related cognitive impairment. Genes (Basel). 2021; 12:913. PubMed PMC
Kumar V., Nawroth P.P.. Is the association between diabetes mellitus and pulmonary fibrosis real?. Nat. Rev. Endocrinol. 2021; 17:703–704. PubMed
Kopf S., Kumar V., Kender Z., Han Z., Fleming T., Herzig S., Nawroth P.P.. Diabetic pneumopathy - a new diabetes-associated complication: mechanisms, consequences and treatment considerations. Front. Endocrinol. (Lausanne). 2021; 12:765201. PubMed PMC
Saraiva M.A., Borges C.M., Florencio M.H.. Reactions of a modified lysine with aldehydic and diketonic dicarbonyl compounds: an electrospray mass spectrometry structure/activity study. J. Mass Spectrom. 2006; 41:216–228. PubMed
Oikonomou D., Groener J.B., Cheko R., Kender Z., Kihm L., Fleming T., Kopf S., Nawroth P.P.. Genetic polymorphisms of antioxidant and antiglycation enzymes and diabetic complications. How much can we learn from the genes?. Exp. Clin. Endocrinol. Diabetes. 2018; 126:7–13. PubMed
Groener J.B., Oikonomou D., Cheko R., Kender Z., Zemva J., Kihm L., Muckenthaler M., Peters V., Fleming T., Kopf S.et al. .. Methylglyoxal and advanced glycation end products in patients with diabetes - what we know so far and the missing links. Exp. Clin. Endocrinol. Diabetes. 2019; 127:497–504. PubMed
Misono S., Mizuno K., Suetsugu T., Tanigawa K., Nohata N., Uchida A., Sanada H., Okada R., Moriya S., Inoue H.et al. .. Molecular signature of small cell lung cancer after treatment failure: the MCM complex as therapeutic target. Cancers (Basel). 2021; 13:1187. PubMed PMC
Kowal T.J., Falk M.M.. Primary cilia found on HeLa and other cancer cells. Cell Biol. Int. 2015; 39:1341–1347. PubMed PMC
Stead B.E., Brandl C.J., Sandre M.K., Davey M.J.. Mcm2 phosphorylation and the response to replicative stress. BMC Genet. 2012; 13:36. PubMed PMC
Xing M., Wang X., Palmai-Pallag T., Shen H., Helleday T., Hickson I.D., Ying S.. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget. 2015; 6:37638–37646. PubMed PMC
Kai M., Boddy M.N., Russell P., Wang T.S.. Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev. 2005; 19:919–932. PubMed PMC
Chuang C.H., Wallace M.D., Abratte C., Southard T., Schimenti J.C.. Incremental genetic perturbations to MCM2–7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress. PLos Genet. 2010; 6:e1001110. PubMed PMC
Mirman Z., de Lange T.. 53BP1: a DSB escort. Genes Dev. 2020; 34:7–23. PubMed PMC
Flynn R.L., Zou L.. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem. Sci. 2011; 36:133–140. PubMed PMC
Somyajit K., Gupta R., Sedlackova H., Neelsen K.J., Ochs F., Rask M.B., Choudhary C., Lukas J.. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017; 358:797–802. PubMed
Kunkel T.A. Considering the cancer consequences of altered DNA polymerase function. Cancer Cell. 2003; 3:105–110. PubMed
Barbari S.R., Shcherbakova P.V.. Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst.). 2017; 56:16–25. PubMed PMC
Garcia C.K. Insights from human genetic studies of lung and organ fibrosis. J. Clin. Invest. 2018; 128:36–44. PubMed PMC
Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Raza S.R., Freund A., Campeau E., Davalos A.R., Campisi J.. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 2009; 11:973–979. PubMed PMC
Hatch E.M., Fischer A.H., Deerinck T.J., Hetzer M.W.. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013; 154:47–60. PubMed PMC
Working Group “In vitro micronucleus test”, G.f.U.-M. Hintzsche H., Hemmann U., Poth A., Utesch D., Lott J., Stopper H.. Fate of micronuclei and micronucleated cells. Mutat. Res. Rev. Mutat. Res. 2017; 771:85–98. PubMed
Utani K., Kohno Y., Okamoto A., Shimizu N.. Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One. 2010; 5:e10089. PubMed PMC
Kwon M., Leibowitz M.L., Lee J.H.. Small but mighty: the causes and consequences of micronucleus rupture. Exp. Mol. Med. 2020; 52:1777–1786. PubMed PMC
Leclerc E., Fritz G., Vetter S.W., Heizmann C.W.. Binding of S100 proteins to RAGE: an update. Biochim. Biophys. Acta. 2009; 1793:993–1007. PubMed
Gorsler T., Murzik U., Ulbricht T., Hentschel J., Hemmerich P., Melle C.. DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation. BMC Cell Biol. 2010; 11:100. PubMed PMC
Pusterla T., de Marchis F., Palumbo R., Bianchi M.E.. High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity. 2009; 42:308–310. PubMed
Ramasamy R., Yan S.F., Schmidt A.M.. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N.Y. Acad. Sci. 2011; 1243:88–102. PubMed PMC
Qiu S., Jiang G., Cao L., Huang J.. Replication fork reversal and protection. Front. Cell Dev. Biol. 2021; 9:670392. PubMed PMC
Liliensiek B., Weigand M.A., Bierhaus A., Nicklas W., Kasper M., Hofer S., Plachky J., Grone H.J., Kurschus F.C., Schmidt A.M.et al. .. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J. Clin. Invest. 2004; 113:1641–1650. PubMed PMC
Bierhaus A., Nawroth P.P.. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009; 52:2251–2263. PubMed
Frommhold D., Kamphues A., Hepper I., Pruenster M., Lukic I.K., Socher I., Zablotskaya V., Buschmann K., Lange-Sperandio B., Schymeinsky J.et al. .. RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood. 2010; 116:841–849. PubMed
Bierhaus A., Haslbeck K.M., Humpert P.M., Liliensiek B., Dehmer T., Morcos M., Sayed A.A., Andrassy M., Schiekofer S., Schneider J.G.et al. .. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest. 2004; 114:1741–1751. PubMed PMC
Sparvero L.J., Asafu-Adjei D., Kang R., Tang D., Amin N., Im J., Rutledge R., Lin B., Amoscato A.A., Zeh H.J.et al. .. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 2009; 7:17. PubMed PMC
Chavakis T., Bierhaus A., Nawroth P.P.. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect. 2004; 6:1219–1225. PubMed
Monferran S., Paupert J., Dauvillier S., Salles B., Muller C.. The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J. 2004; 23:3758–3768. PubMed PMC
Li T., Diner B.A., Chen J., Cristea I.M.. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:10558–10563. PubMed PMC
Malewicz M., Kadkhodaei B., Kee N., Volakakis N., Hellman U., Viktorsson K., Leung C.Y., Chen B., Lewensohn R., van Gent D.C.et al. .. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes Dev. 2011; 25:2031–2040. PubMed PMC
Ruzankina Y., Pinzon-Guzman C., Asare A., Ong T., Pontano L., Cotsarelis G., Zediak V.P., Velez M., Bhandoola A., Brown E.J.. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell. 2007; 1:113–126. PubMed PMC
de Klein A., Muijtjens M., van Os R., Verhoeven Y., Smit B., Carr A.M., Lehmann A.R., Hoeijmakers J.H.. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 2000; 10:479–482. PubMed
Dendouga N., Gao H., Moechars D., Janicot M., Vialard J., McGowan C.H.. Disruption of murine Mus81 increases genomic instability and DNA damage sensitivity but does not promote tumorigenesis. Mol. Cell. Biol. 2005; 25:7569–7579. PubMed PMC
Slaats G.G., Saldivar J.C., Bacal J., Zeman M.K., Kile A.C., Hynes A.M., Srivastava S., Nazmutdinova J., den Ouden K., Zagers M.S.et al. .. DNA replication stress underlies renal phenotypes in CEP290-associated Joubert syndrome. J. Clin. Invest. 2015; 125:3657–3666. PubMed PMC