Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-16-0066
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
PubMed
31853669
DOI
10.1007/s10238-019-00601-7
PII: 10.1007/s10238-019-00601-7
Knihovny.cz E-zdroje
- Klíčová slova
- Beta-2-microglobulin, Cancer immunogenicity, Colorectal cancer, Microsatellite instability, Promoter methylation,
- MeSH
- beta-2-mikroglobulin genetika MeSH
- CpG ostrůvky MeSH
- dospělí MeSH
- down regulace MeSH
- epigeneze genetická MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mikrosatelitní nestabilita * MeSH
- mutace MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u nádorů MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- B2M protein, human MeSH Prohlížeč
- beta-2-mikroglobulin MeSH
One of the most common mechanisms of immune evasion in MSI colorectal cancers (CRCs) is loss of HLA class I expression due to mutations in B2M gene which can become a negative predictor for checkpoint blockade therapy. The aim of this study was the determination of prevalence of B2M somatic mutations in MSI CRC patients and relationship between B2M mutations and lymphocytes infiltration and other clinicopathological features as well as detection of methylation changes in B2M promoter region which can be another mechanism of immune escape. In our study, 37 MSI-H and 5 MSI-L patients were selected for screening of B2M mutational and methylation status. The characterization of patients was based on standard histopathological diagnosis and TNM classification; BRAF, KRAS mutations, tumor-infiltrating lymphocytes and peritumoral lymphoid reaction were also determined. MSI analysis was performed using fragment analysis. B2M mutations were identified by Sanger sequencing, and methylation of CpG islands in promoter region was detected by methylation-specific PCR. Heterozygous mutations in the B2M gene were detected in five MSI-H patients (13.5%), while the mutation c.45_48delTTCT was determined in four patients and mutation c.276delC was found in two patients. One of these five patients was compound heterozygote harboring both mutations. Methylation of the promoter region of the B2M gene was observed in one patient with MSI-H colorectal cancer. Detection of genetic and epigenetic changes in B2M gene could be important in personalized therapy for CRC patients as these changes may be one of the mechanisms of secondary resistance of MSI positive tumors to immunotherapy.
Department of Internal Medicine Brothers of Mercy Hospital Polní 553 3 63900 Brno Czech Republic
Faculty of Medicine University of Oviedo Central University Hospital of Asturias Oviedo Spain
Zobrazit více v PubMed
Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer. 2005;92:1746–53. PubMed DOI PMC
Kloor M, Von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends Cancer. 2016;2:121–33. PubMed DOI
Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87. PubMed DOI
Jung SB, Lee HI, Oh HK, Shin IH, Jeon CH. Clinico-pathologic parameters for prediction of microsatellite instability in colorectal cancer. Cancer Res Treat. 2012;44:179–86. PubMed DOI PMC
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. PubMed DOI PMC
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immuno reactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9. PubMed DOI PMC
Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136. PubMed DOI PMC
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13. PubMed DOI PMC
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. PubMed DOI PMC
Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010;127:1001–10. PubMed DOI
Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P. Selection for beta 2-microglobulin mutation in mismatch repair defective colorectal carcinomas. Curr Biol. 1996;6:1695–7. PubMed DOI
Yamamoto H, Yamashita K, Perucho M. Somatic mutation of the beta2-microglobulin gene associates with unfavorable prognosis in gastrointestinal cancer of the microsatellite mutator phenotype. Gastroenterology. 2001;120:1565–7. PubMed DOI
Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–8. PubMed DOI
Tikidzhieva A, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–45. PubMed DOI PMC
Clendenning M, Huang A, Jayasekara H, Investigators from the Melbourne Collaborative Cohort Study and the Australasian Colorectal Cancer Family Registry Cohort, et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam Cancer. 2018;17:91–100. PubMed DOI PMC
Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018;8:730–49. PubMed DOI PMC
Yeon Yeon S, Jung SH, Jo YS, et al. Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract. 2019;215:209–14. PubMed DOI
Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174:1462–71. PubMed DOI
Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother. 2007;56:227–36. PubMed DOI
Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35. PubMed DOI PMC
Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29. PubMed DOI PMC
Kašubová I, Kalman M, Jašek K, et al. Stratification of patients with colorectal cancer without the recorded family history. Oncol Lett. 2019;17:3649–56. PubMed PMC
Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2009.
Jenkins MA, Hayashi S, O’Shea AM, Colon Cancer Family Registry, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population—based study. Gastroenterology. 2007;133:48–56. PubMed DOI
Hyde A, Fontaine D, Stuckless S, et al. A histology-based model for predicting microsatellite instability in colorectal cancers. Am J Surg Pathol. 2010;34:1820–9. PubMed DOI
Lasabová Z, Kalman M, Holubeková V, et al. Mutation analysis of POLE gene in patients with early onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clin Exp Med. 2019;19:393–400. PubMed DOI
Jasek K, Buzalkova V, Minarik G, et al. Detection of mutations in the BRAF gene in patients with KIT and PDGFRA wild-type gastrointestinal stromal tumors. Virchows Arch. 2017;470:29–36. PubMed DOI
Harlé A, Busser B, Rouyer M, et al. Comparison of COBAS 4800, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch. 2013;462:329–35. PubMed DOI
Vanova B, Kalman M, Jasek K, et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med. 2019;19:219–24. PubMed DOI
Lasabova Z, Tilandyova P, Kajo K, et al. Hypermethylation of the GSTP1 promoter region in breast cancer is associated with prognostic clinicopathological parameters. Neoplasma. 2010;57:35–40. PubMed DOI
Ding S, Gong BD, Yu J, et al. Methylation profile of the promoter CpG islands of 14 “drug-resistance” genes in hepatocellular carcinoma. World J Gastroenterol. 2004;10:3433–40. PubMed DOI PMC
R Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. www.R-project.org/ .
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70. PubMed DOI
Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2014;21:687–92. PubMed DOI PMC
Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85. PubMed DOI PMC
Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155:858–68. PubMed DOI
Koelzer VH, Baker K, Kassahn D, Baumhoer D, Zlobec I. Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol. 2012;65:996–1002. PubMed DOI
Janikovits J, Müller M, Krzykalla J, et al. High numbers of PDCD1 (PD-1)-positive T cells and B2M mutations in microsatellite-unstable colorectal cancer. Oncoimmunology. 2018;7:e1390640. PubMed DOI
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4. PubMed DOI
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39. PubMed DOI
Bicknell DC, Rowan A, Bodmer WF. Beta2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proc Natl Acad Sci USA. 1994;91:4751–5. PubMed DOI PMC
Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens. 2003;61:211–9. PubMed DOI
Hill DM, Kasliwal T, Schwarz E, et al. A dominant negative mutant beta 2-microglobulin blocks the extracellular folding of a major histocompatibility complex class I heavy chain. J Biol Chem. 2003;278:5630–8. PubMed DOI
Sucker A, Zhao F, Real B, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20:6593–604. PubMed DOI PMC
Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–92. PubMed DOI
Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–86. PubMed DOI
Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96. PubMed DOI
Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg. 2011;141:808–14. PubMed DOI
van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004;16:67–75. PubMed DOI
Serrano A, Tanzarella S, Lionello I, et al. Expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer. 2001;94:243–51. PubMed DOI
Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class-I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001;22:1615–23. PubMed DOI
Ye Q, Shen Y, Wang X, et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens. 2010;75:30–9. PubMed DOI
Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci USA. 2016;113:5999–6004. PubMed DOI PMC
Gyorffy B, Nagy A, Pongor L. Effect of DNA hypermethylation on immune escape through downregulation of antigen presentation genes in breast cancer. J Clin Oncol. 2016;34(15 suppl):11547. DOI