Mast cell chemotaxis - chemoattractants and signaling pathways

. 2012 ; 3 () : 119. [epub] 20120525

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22654878

Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E(2) and D(2), leukotriene (LT) B(4), LTD(4), and LTC(4), and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1-3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.

Zobrazit více v PubMed

Abonia J. P., Austen K. F., Rollins B. J., Joshi S. K., Flavell R. A., Kuziel W. A., Koni P. A., Gurish M. F. (2005). Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105, 4308–431310.1182/blood-2004-09-3578 PubMed DOI PMC

Amin K., Janson C., Harvima I., Venge P., Nilsson G. (2005). CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J. Allergy Clin. Immunol. 116, 1383–138610.1016/j.jaci.2005.08.053 PubMed DOI

Ancellin N., Colmont C., Su J., Li Q., Mittereder N., Chae S. S., Stefansson S., Liau G., Hla T. (2002). Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J. Biol. Chem. 277, 6667–667510.1074/jbc.M102841200 PubMed DOI

Andrew N., Insall R. H. (2007). Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat. Cell Biol. 9, 193–20010.1038/ncb1536 PubMed DOI

Angeli V., Staumont D., Charbonnier A. S., Hammad H., Gosset P., Pichavant M., Lambrecht B. N., Capron M., Dombrowicz D., Trottein F. (2004). Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. J. Immunol. 172, 3822–3829 PubMed

Aung G., Niyonsaba F., Ushio H., Kajiwara N., Saito H., Ikeda S., Ogawa H., Okumura K. (2011). Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology 132, 527–53910.1111/j.1365-2567.2010.03395.x PubMed DOI PMC

Bautz F., Denzlinger C., Kanz L., Mohle R. (2001). Chemotaxis and transendothelial migration of CD34+ hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood 97, 3433–344010.1182/blood.V97.11.3433 PubMed DOI

Berenbaum F., Humbert L., Bereziat G., Thirion S. (2003). Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. J. Biol. Chem. 278, 13680–1368710.1074/jbc.M211570200 PubMed DOI

Boehme S. A., Franz-Bacon K., Chen E. P., Ly T. W., Kawakami Y., Bacon K. B. (2009). Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2). Int. Immunol. 21, 621–63210.1093/intimm/dxp031 PubMed DOI

Boyce J. A. (2007). Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–18510.1111/j.1600-065X.2007.00512.x PubMed DOI

Brdička T., Imrich M., Angelisová P., Brdičková N., Horváth O., Špička J., Hilgert I., Lusková P., Dráber P., Novák P., Engels N., Wienands J., Simeoni L., Osterreicher J., Aguado E., Malissen M., Schraven B., Hořejší V. (2002). Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–162610.1084/jem.20021405 PubMed DOI PMC

Brightling C. E., Ammit A. J., Kaur D., Black J. L., Wardlaw A. J., Hughes J. M., Bradding P. (2005a). The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med. 171, 1103–110810.1164/rccm.200409-1220OC PubMed DOI

Brightling C. E., Kaur D., Berger P., Morgan A. J., Wardlaw A. J., Bradding P. (2005b). Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. J. Leukoc. Biol. 77, 759–76610.1189/jlb.0904511 PubMed DOI

Brown R. A., Spina D., Page C. P. (2008). Adenosine receptors and asthma. Br. J. Pharmacol. 153, S446–S45610.1038/bjp.2008.22 PubMed DOI PMC

Brzezińska-Blaszczyk E., Pietrzak A., Misiak-Tloczek A. H. (2007). Tumor necrosis factor (TNF) is a potent rat mast cell chemoattractant. J. Interferon Cytokine Res. 27, 911–92010.1089/jir.2006.0158 PubMed DOI

Buday L., Egan S. E., Rodriguez V. P., Cantrell D. A., Downward J. (1994). A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in Ras activation in T cells. J. Biol. Chem. 269, 9019–9023 PubMed

Byrne S. N, Limón-Flores, A. Y., Ullrich S. E. (2008). Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J. Immunol. 180, 4648–4655 PubMed PMC

Chabot B., Stephenson D. A., Chapman V. M., Besmer P., Bernstein A. (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88–8910.1038/335088a0 PubMed DOI

Charest P. G., Firtel R. A. (2010). “TORCing” neutrophil chemotaxis. Dev. Cell 19, 795–79610.1016/j.devcel.2010.11.017 PubMed DOI PMC

Charest P. G., Shen Z., Lakoduk A., Sasaki A. T., Briggs S. P., Firtel R. A. (2010). A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev. Cell 18, 737–74910.1016/j.devcel.2010.03.017 PubMed DOI PMC

Chen L., Iijima M., Tang M., Landree M. A., Huang Y. E., Xiong Y., Iglesias P. A., Devreotes P. N. (2007). PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603–61410.1016/j.devcel.2007.03.005 PubMed DOI PMC

Cho K. J., Seo J. M., Lee M. G., Kim J. H. (2010). BLT2 Is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. J. Immunol. 185, 6329–633710.4049/jimmunol.1001213 PubMed DOI

Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. (1991). A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043–105110.1016/0092-8674(91)90556-E PubMed DOI

Collington S. J., Hallgren J., Pease J. E., Jones T. G., Rollins B. J., Westwick J., Austen K. F., Williams T. J., Gurish M. F., Weller C. L. (2010a). The role of the CCL2/CCR2 axis in mouse mast cell migration in vitro and in vivo. J. Immunol. 184, 6114–612310.4049/jimmunol.0904177 PubMed DOI PMC

Collington S. J., Westwick J., Williams T. J., Weller C. L. (2010b). The function of CCR3 on mouse bone marrow-derived mast cells in vitro. Immunology 129, 115–12410.1111/j.1365-2567.2009.03151.x PubMed DOI PMC

Collington S. J., Williams T. J., Weller C. L. (2011). Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol. 32, 478–48510.1016/j.it.2011.08.002 PubMed DOI

Cooper P. H., Stanworth D. R. (1976). Isolation of rat peritoneal mast cells in high yield and purity. Methods Cell. Biol. 14, 365–37810.1016/S0091-679X(08)60496-3 PubMed DOI

de Paulis A., Annunziato F., Di Gioia L., Romagnani S., Carfora M., Beltrame C., Marone G., Romagnani P. (2001) Expression of the chemokine receptor CCR3 on human mast cells. Int. Arch. Allergy Immunol. 124, 146–15010.1159/000053694 PubMed DOI

Dorsam R. T., Gutkind J. S. (2007). G-protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79–9410.1038/nrc2069-c2 PubMed DOI

Dráber P., Dráberová L. (2005). Lifting the fog in store-operated Ca2+ entry. Trends Immunol. 26, 621–62410.1016/j.it.2005.09.006 PubMed DOI

Draber P., Halova I., Levi-Schaffer F., Draberova L. (2012). Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immun. 2:95.10.3389/fimmu.2011.00095 PubMed DOI PMC

Duffy S. M., Cruse G., Brightling C. E., Bradding P. (2007). Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur. J. Immunol. 37, 1653–166210.1002/eji.200637024 PubMed DOI PMC

Eiseman E., Bolen J. B. (1992). Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355, 78–8010.1038/355078a0 PubMed DOI

Ferguson G. J., Milne L., Kulkarni S., Sasaki T., Walker S., Andrews S., Crabbe T., Finan P., Jones G., Jackson S., Camps M., Rommel C., Wymann M., Hirsch E., Hawkins P., Stephens L. (2007). PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol. 9, 86–9110.1038/ncb1517 PubMed DOI

Feuser K., Thon K.-P., Bischoff S. C., Lorentz A. (2012). Human intestinal mast cells are a potent source of multiple chemokines. Cytokine 58, 178–18510.1016/j.cyto.2012.01.001 PubMed DOI

Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. (1998). LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–62610.1016/S1074-7613(00)80659-7 PubMed DOI

Fox C. C., Dvorak A. M., Peters S. P., Kagey-Sobotka A., Lichtenstein L. M. (1985). Isolation and characterization of human intestinal mucosal mast cells. J. Immunol. 135, 483–491 PubMed

Funamoto S., Meili R., Lee S., Parry L., Firtel R. A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–62310.1016/S0092-8674(02)00755-9 PubMed DOI

Funamoto S., Milan K., Meili R., Firtel R. A. (2001). Role of phosphatidylinositol 3’ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J. Cell Biol. 153, 795–81010.1083/jcb.153.4.795 PubMed DOI PMC

Furumoto Y., Brooks S., Olivera A., Takagi Y., Miyagishi M., Taira K., Casellas R., Beaven M. A., Gilfillan A. M., Rivera J. (2006). Cutting edge: lentiviral short hairpin RNA silencing of PTEN in human mast cells reveals constitutive signals that promote cytokine secretion and cell survival. J. Immunol. 176, 5167–5171 PubMed

Ghebrehiwet B., Kew R. R., Gruber B. L., Marchese M. J., Peerschke E. I., Reid K. B. (1995). Murine mast cells express two types of C1q receptors that are involved in the induction of chemotaxis and chemokinesis. J. Immunol. 155, 2614–2619 PubMed

Gilliland L. K., Schieven G. L., Norris N. A., Kanner S. B., Aruffo A., Ledbetter J. A. (1992). Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLCγ1 SH2 domains. J. Biol. Chem. 267, 13610–13616 PubMed

Gomi K., Zhu F. G., Marshall J. S. (2000). Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J. Immunol. 165, 6545–6552 PubMed

Gruber B. L., Marchese M. J., Kew R. R. (1994). Transforming growth factor-β1 mediates mast cell chemotaxis. J. Immunol. 152, 5860–5867 PubMed

Haddon D. J., Antignano F., Hughes M. R., Blanchet M. R., Zbytnuik L., Krystal G., McNagny K. M. (2009). SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J. Immunol. 183, 228–23610.4049/jimmunol.0900427 PubMed DOI

Hájková Z., Bugajev V., Dráberová E., Vinopal S., Dráberová L., Janáček J., Dráber P., Dráber P. (2011). STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 186, 913–92310.4049/jimmunol.1002074 PubMed DOI

Hallgren J., Gurish M. F. (2007). Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol. Rev. 217, 8–1810.1111/j.1600-065X.2007.00502.x PubMed DOI

Hallgren J., Gurish M. F. (2011). Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716, 14–2810.1007/978-1-4419-9533-9_2 PubMed DOI PMC

Hallgren J., Jones T. G., Abonia J. P., Xing W., Humbles A., Austen K. F., Gurish M. F. (2007). Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors. Proc. Natl. Acad. Sci. U.S.A. 104, 20478–2048310.1073/pnas.0709651104 PubMed DOI PMC

Hammad H., de Heer H. J., Soullie T., Hoogsteden H. C., Trottein F., Lambrecht B. N. (2003). Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J. Immunol. 171, 3936–3940 PubMed

Hartmann K., Henz B. M., Kruger-Krasagakes S., Kohl J., Burger R., Guhl S., Haase I., Lippert U., Zuberbier T. (1997). C3a and C5a stimulate chemotaxis of human mast cells. Blood 89, 2863–2870 PubMed

Heit B., Liu L., Colarusso P., Puri K. D., Kubes P. (2008). PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–21410.1242/jcs.020412 PubMed DOI

Heit B., Tavener S., Raharjo E., Kubes P. (2002). An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–10210.1083/jcb.200202114 PubMed DOI PMC

Hirai H., Tanaka K., Yoshie O., Ogawa K., Kenmotsu K., Takamori Y., Ichimasa M., Sugamura K., Nakamura M., Takano S., Nagata K. (2001). Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 193, 255–26110.1084/jem.193.2.255 PubMed DOI PMC

Huang Y. E., Iijima M., Parent C. A., Funamoto S., Firtel R. A., Devreotes P. (2003). Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol. Biol. Cell 14, 1913–192210.1091/mbc.E03-06-0362 PubMed DOI PMC

Humbles A. A., Lu B., Friend D. S., Okinaga S., Lora J., Al-Garawi A., Martin T. R., Gerard N. P., Gerard C. (2002). The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl. Acad. Sci. U.S.A 99, 1479–148410.1073/pnas.261462598 PubMed DOI PMC

Ichikawa A., Sugimoto Y., Negishi M. (1996). Molecular aspects of the structures and functions of the prostaglandin E receptors. J. Lipid Mediat. Cell Signal. 14, 83–8710.1016/0929-7855(96)00512-3 PubMed DOI

Iijima M., Huang Y. E., Devreotes P. (2002). Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–47810.1016/S1534-5807(02)00292-7 PubMed DOI

Iijima M., Huang Y. E., Luo H. R., Vazquez F., Devreotes P. N. (2004). Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–1661310.1074/jbc.M312098200 PubMed DOI

Inamura H., Kurosawa M., Okano A., Kayaba H., Majima M. (2002). Expression of the interleukin-8 receptors CXCR1 and CXCR2 on cord-blood-derived cultured human mast cells. Int. Arch. Allergy Immunol. 128, 142–15010.1159/000059405 PubMed DOI

Insall R. H. (2010). Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nat. Rev. Mol. Cell Biol. 11, 453–45810.1038/nrm2905 PubMed DOI

Ishiai M., Kurosaki M., Inabe K., Chan A. C., Sugamura K., Kurosaki T. (2000). Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J. Exp. Med. 192, 847–85610.1084/jem.192.6.847 PubMed DOI PMC

Ishizuka T., Okajima F., Ishiwara M., Iizuka K., Ichimonji I., Kawata T., Tsukagoshi H., Dobashi K., Nakazawa T., Mori M. (2001). Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J. Immunol. 167, 2298–2304 PubMed

Janssen E., Zhu M., Zhang W., Koonpaew S., Zhang W. (2003). LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–12310.1038/nrm1018 PubMed DOI

Jensen B. M., Beaven M. A., Iwaki S., Metcalfe D. D., Gilfillan A. M. (2008). Concurrent inhibition of kit- and FcεRI-mediated signaling: coordinated suppression of mast cell activation. J. Pharmacol. Exp. Ther. 324, 128–13810.1124/jpet.107.125237 PubMed DOI PMC

Jiang Y., Borrelli L. A., Kanaoka Y., Bacskai B. J., Boyce J. A. (2007). CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110, 3263–327010.1182/blood-2007-07-100990 PubMed DOI PMC

Jiang Y., Kanaoka Y., Feng C., Nocka K., Rao S., Boyce J. A. (2006). Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. J. Immunol. 177, 2755–2759 PubMed

Jolly P. S., Bektas M., Olivera A., Gonzalez-Espinosa C., Proia R. L., Rivera J., Milstien S., Spiegel S. (2004). Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959–97010.1084/jem.20030648 PubMed DOI PMC

Jolly P. S., Bektas M., Watterson K. R., Sankala H., Payne S. G., Milstien S., Spiegel S. (2005). Expression of SphK1 impairs degranulation and motility of RBL-2H3 mast cells by desensitizing S1P receptors. Blood 105, 4736–474210.1182/blood-2004-12-4686 PubMed DOI PMC

Juremalm M., Hjertson M., Olsson N., Harvima I., Nilsson K., Nilsson G. (2000). The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1α acts as a mast cell chemotaxin. Eur. J. Immunol. 30, 3614–362210.1002/1521-4141(200012)30:12<3614::AID-IMMU3614>3.0.CO;2-B PubMed DOI

Juremalm M., Nilsson G. (2005). Chemokine receptor expression by mast cells. Chem. Immunol. Allergy 87, 130–14410.1159/000087640 PubMed DOI

Juremalm M., Olsson N., Nilsson G. (2002). Selective CCL5/RANTES-induced mast cell migration through interactions with chemokine receptors CCR1 and CCR4. Biochem. Biophys. Res. Commun. 297, 480–48510.1016/S0006-291X(02)02244-1 PubMed DOI

Kanegasaki S., Nomura Y., Nitta N., Akiyama S., Tamatani T., Goshoh Y., Yoshida T., Sato T., Kikuchi Y. (2003). A novel optical assay system for the quantitative measurement of chemotaxis. J. Immunol. Methods 282, 1–1110.1016/j.jim.2003.07.008 PubMed DOI

Kaplan A. P. (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol. 124, 423–43110.1159/000053751 PubMed DOI

Kay L. J., Yeo W. W., Peachell P. T. (2006). Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br. J. Pharmacol. 147, 707–71310.1038/sj.bjp.0706664 PubMed DOI PMC

Kay R. R., Langridge P., Traynor D., Hoeller O. (2008). Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9, 455–46310.1038/nrm2419-c2 PubMed DOI

Kim M. S., Kuehn H. S., Metcalfe D. D., Gilfillan A. M. (2008a). Activation and function of the mTORC1 pathway in mast cells. J. Immunol. 180, 4586–4595 PubMed PMC

Kim M. S., Rådinger M., Gilfillan A. M. (2008b). The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 29, 493–50110.1016/j.it.2008.07.004 PubMed DOI PMC

Kitaura J., Eto K., Kinoshita T., Kawakami Y., Leitges M., Lowell C. A., Kawakami T. (2005a). Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. J. Immunol. 174, 4495–4504 PubMed

Kitaura J., Kinoshita T., Matsumoto M., Chung S., Kawakami Y., Leitges M., Wu D., Lowell C. A., Kawakami T. (2005b). IgE- and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood 105, 32223229.10.1182/blood-2004-11-4205 PubMed DOI PMC

Kolsch V., Charest P. G., Firtel R. A. (2008). The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–55910.1242/jcs.023333 PubMed DOI PMC

Kortholt A., Kataria R., Keizer-Gunnink I., van Egmond W. N., Khanna A., van Haastert P. J. (2011). Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification. EMBO Rep. 12, 1273–127910.1038/embor.2011.210 PubMed DOI PMC

Kramer R. M., Sharp J. D. (1995). Recent insights into the structure, function and biology of cPLA2. Agents Actions Suppl. 46, 65–76 PubMed

Kramer R. M., Sharp J. D. (1997). Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett. 410, 49–5310.1016/S0014-5793(97)00322-0 PubMed DOI

Kuehn H. S., Gilfillan A. M. (2007). G protein-coupled receptors and the modification of FcεRI-mediated mast cell activation. Immunol. Lett. 113, 59–6910.1016/j.imlet.2007.08.007 PubMed DOI PMC

Kuehn H. S., Jung M. Y., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2011a). Distinct PGE2-responder and non-responder phenotypes in human mast cell populations: “all or nothing” enhancement of antigen-dependent mediator release. Immunol. Lett. 141, 45–5410.1016/j.imlet.2011.07.002 PubMed DOI PMC

Kuehn H. S., Jung M. Y., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2011b). Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J. Biol. Chem. 286, 391–40210.1074/jbc.M110.164772 PubMed DOI PMC

Kuehn H. S., Rådinger M., Brown J. M., Ali K., Vanhaesebroeck B., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2010). Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J. Cell Sci. 123, 2576–258510.1242/jcs.071043 PubMed DOI PMC

Kuehn H. S., Swindle E. J., Kim M. S., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2008). The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J. Immunol. 181, 7706–7712 PubMed PMC

Kushnir-Sukhov N. M., Gilfillan A. M., Coleman J. W., Brown J. M., Bruening S., Toth M., Metcalfe D. D. (2006). 5-hydroxytryptamine induces mast cell adhesion and migration. J. Immunol. 177, 6422–6432 PubMed

Lee S., Comer F. I., Sasaki A., McLeod I. X., Duong Y., Okumura K., Yates J. R., III, Parent C. A., Firtel R. A. (2005). TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell 16, 4572–458310.1091/mbc.E05-04-0342 PubMed DOI PMC

Lewis R. A., Soter N. A., Diamond P. T., Austen K. F., Oates J. A., Roberts L. J. (1982). Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 129, 1627–1631 PubMed

Linnekin D., DeBerry C. S., Mou S. (1997). Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J. Biol. Chem. 272, 27450–2745510.1074/jbc.272.43.27450 PubMed DOI

Liou J., Kim M. L., Heo W. D., Jones J. T., Myers J. W., Ferrell J. E., Jr., Meyer T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–124110.1016/j.cub.2005.05.055 PubMed DOI PMC

Liu H., Toman R. E., Goparaju S. K., Maceyka M., Nava V. E., Sankala H., Payne S. G., Bektas M., Ishii I., Chun J., Milstien S., Spiegel S. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. 278, 40330–4033610.1074/jbc.M207074200 PubMed DOI

Liu L., Das S., Losert W., Parent C. A. (2010). mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev. Cell 19, 845–85710.1016/j.devcel.2010.11.004 PubMed DOI PMC

Liu L., Parent C. A. (2011). Review series: TOR kinase complexes and cell migration. J. Cell Biol. 194, 815–82410.1083/jcb.201102090 PubMed DOI PMC

Liu S. K., Fang N., Koretzky G. A., McGlade C. J. (1999). The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–7510.1016/S0960-9822(00)80061-5 PubMed DOI

Lloyd C. M., Brown Z. (2006). Chemokine receptors: therapeutic potential in asthma. Treat. Respir. Med. 5, 159–16610.2165/00151829-200605030-00002 PubMed DOI

Loovers H. M., Postma M., Keizer-Gunnink I., Huang Y. E., Devreotes P. N., van Haastert P. J. (2006). Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol. Biol. Cell 17, 1503–151310.1091/mbc.E05-09-0825 PubMed DOI PMC

Lundeen K. A., Sun B., Karlsson L., Fourie A. M. (2006). Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J. Immunol. 177, 3439–3447 PubMed

Mathes C., Fleig A., Penner R. (1998). Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem. 273, 25020–2503010.1074/jbc.273.39.25020 PubMed DOI

Matsui K., Nishikawa A. (2005). Percutaneous application of peptidoglycan from Staphylococcus aureus induces an increase in mast cell numbers in the dermis of mice. Clin. Exp. Allergy 35, 382–38710.1111/j.1365-2222.2005.02331.x PubMed DOI

McCloskey M. A., Fan Y., Luther S. (1999). Chemotaxis of rat mast cells toward adenine nucleotides. J. Immunol. 163, 970–977 PubMed

Meininger C. J., Yano H., Rottapel R., Bernstein A., Zsebo K. M., Zetter B. R. (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963 PubMed

Melendez A. J., Khaw A. K. (2002). Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem. 277, 17255–1726210.1074/jbc.M204886200 PubMed DOI

Mellor E. A., Frank N., Soler D., Hodge M. R., Lora J. M., Austen K. F., Boyce J. A. (2003). Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc. Natl. Acad. Sci. U.S.A. 100, 11589–1159310.1073/pnas.2034927100 PubMed DOI PMC

Misiak-Tloczek A., Brzezińska-Blaszczyk E. (2009). IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways. APMIS 117, 558–56710.1111/j.1600-0463.2009.02518.x PubMed DOI

Mizugishi K., Yamashita T., Olivera A., Miller G. F., Spiegel S., Proia R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol. 25, 11113–1112110.1128/MCB.25.24.11113-11121.2005 PubMed DOI PMC

Möhle R., Bautz F., Denzlinger C., Kanz L. (2001). Transendothelial migration of hematopoietic progenitor cells. Role of chemotactic factors. Ann. N. Y. Acad. Sci. 938, 26–3410.1111/j.1749-6632.2001.tb03571.x PubMed DOI

Narumiya S., Watanabe N. (2009). Migration without a clutch. Nat. Cell Biol. 11, 1394–139610.1038/ncb1209-1394 PubMed DOI

Nataraj C., Thomas D. W., Tilley S. L., Nguyen M. T., Mannon R., Koller B. H., Coffman T. M. (2001). Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. J. Clin. Invest. 108, 1229–123510.1172/JCI13640 PubMed DOI PMC

Nguyen J. T., Porter M., Amoui M., Miller W. T., Zuckermann R. N., Lim W. A. (2000). Improving SH3 domain ligand selectivity using a non-natural scaffold. Chem. Biol. 7, 463–47310.1016/S1074-5521(00)00130-7 PubMed DOI

Nilsson G., Butterfield J. H., Nilsson K., Siegbahn A. (1994). Stem cell factor is a chemotactic factor for human mast cells. J. Immunol. 153, 3717–3723 PubMed

Nilsson G., Hjertson M., Andersson M., Greiff L., Svensson C., Nilsson K., Siegbahn A. (1998). Demonstration of mast-cell chemotactic activity in nasal lavage fluid: characterization of one chemotaxin as c-kit ligand, stem cell factor. Allergy 53, 874–87910.1111/j.1398-9995.1998.tb03841.x PubMed DOI

Nilsson G., Johnell M., Hammer C. H., Tiffany H. L., Nilsson K., Metcalfe D. D., Siegbahn A., Murphy P. M. (1996). C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J. Immunol. 157, 1693–1698 PubMed

Nilsson G., Metcalfe D. D., Taub D. D. (2000). Demonstration that platelet-activating factor is capable of activating mast cells and inducing a chemotactic response. Immunology 99, 314–31910.1046/j.1365-2567.2000.00972.x PubMed DOI PMC

Nishio M., Watanabe K., Sasaki J., Taya C., Takasuga S., Iizuka R., Balla T., Yamazaki M., Watanabe H., Itoh R., Kuroda S., Horie Y., Forster I., Mak T. W., Yonekawa H., Penninger J. M., Kanaho Y., Suzuki A., Sasaki T. (2007). Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 9, 36–4410.1038/ncb1515 PubMed DOI

Ochi H., Hirani W. M., Yuan Q., Friend D. S., Austen K. F., Boyce J. A. (1999). T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J. Exp. Med. 190, 267–28010.1084/jem.190.2.267 PubMed DOI PMC

Ohnishi H., Miyahara N., Gelfand E. W. (2008). The role of leukotriene B4 in allergic diseases. Allergol. Int. 57, 291–29810.2332/allergolint.08-RAI-0019 PubMed DOI

Okayama Y., Kawakami T. (2006). Development, migration, and survival of mast cells. Immunol. Res. 34, 97–11510.1385/IR:34:2:97 PubMed DOI PMC

Oliveira S. H., Lukacs N. W. (2001). Stem cell factor and IgE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm. Res. 50, 168–17410.1007/s000110050741 PubMed DOI

Olivera A. (2008). Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. Prostaglandins Other Lipid Mediat. 86, 1–1110.1016/j.prostaglandins.2008.02.005 PubMed DOI PMC

Olivera A., Kohama T., Edsall L., Nava V., Cuvillier O., Poulton S., Spiegel S. (1999). Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 147, 545–55810.1083/jcb.147.3.545 PubMed DOI PMC

Olivera A., Mizugishi K., Tikhonova A., Ciaccia L., Odom S., Proia R. L., Rivera J. (2007). The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26, 287–29710.1016/j.immuni.2007.02.008 PubMed DOI

Olivera A., Rivera J. (2005). Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J. Immunol. 174, 1153–1158 PubMed

Olivera A., Spiegel S. (2001). Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins 64, 123–13410.1016/S0090-6980(01)00108-3 PubMed DOI

Olivera A., Urtz N., Mizugishi K., Yamashita Y., Gilfillan A. M., Furumoto Y., Gu H., Proia R. L., Baumruker T., Rivera J. (2006). IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J. Biol. Chem. 281, 2515–252510.1074/jbc.R600020200 PubMed DOI

Olsson N., Rak S., Nilsson G. (2000). Demonstration of mast cell chemotactic activity in bronchoalveolar lavage fluid collected from asthmatic patients before and during pollen season. J. Allergy Clin. Immunol. 105, 455–46110.1067/mai.2000.104380 PubMed DOI

Osher E., Weisinger G., Limor R., Tordjman K., Stern N. (2006). The 5 lipoxygenase system in the vasculature: emerging role in health and disease. Mol. Cell Endocrinol. 252, 201–20610.1016/j.mce.2006.03.038 PubMed DOI

Oskeritzian C. A., Alvarez S. E., Hait N. C., Price M. M., Milstien S., Spiegel S. (2008). Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111, 4193–420010.1182/blood-2007-09-115451 PubMed DOI PMC

Papadopoulos E. J., Fitzhugh D. J., Tkaczyk C., Gilfillan A. M., Sassetti C., Metcalfe D. D., Hwang S. T. (2000). Mast cells migrate, but do not degranulate, in response to fractalkine, a membrane-bound chemokine expressed constitutively in diverse cells of the skin. Eur. J. Immunol. 30, 2355–236110.1002/1521-4141(2000)30:8<2355::AID-IMMU2355>3.0.CO;2-# PubMed DOI

Papakonstanti E. A., Ridley A. J., Vanhaesebroeck B. (2007). The p110δ isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J. 26, 3050–306110.1038/sj.emboj.7601763 PubMed DOI PMC

Parravicini V., Gadina M., Kovarova M., Odom S., Gonzalez-Espinosa C., Furumoto Y., Saitoh S., Samelson L. E., O’Shea J. J., Rivera J. (2002). Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3, 741–748 PubMed

Peest U., Sensken S. C., Andreani P., Hanel P., Van Veldhoven P. P., Graler M. H. (2008). S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J. Cell Biochem. 104, 756–77210.1002/jcb.21665 PubMed DOI

Pietrzak A., Wierzbicki M., Wiktorska M., Brzezinska-Blaszczyk E. (2011). Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm. 2011, 427473.10.1155/2011/427473 PubMed DOI PMC

Poole T. J., Zetter B. R. (1983). Stimulation of rat peritoneal mast cell migration by tumor-derived peptides. Cancer Res. 43, 5857–5861 PubMed

Ralevic V., Burnstock G. (1998). Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 PubMed

Ramkumar V., Stiles G. L., Beaven M. A., Ali H. (1993). The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 268, 16887–16890 PubMed

Razin E., Cordon-Cardo C., Good R. A. (1981). Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc. Natl. Acad. Sci. U.S.A. 78, 2559–256110.1073/pnas.78.9.5793 PubMed DOI PMC

Razin E., Mencia-Huerta J. M., Stevens R. L., Lewis R. A., Liu F. T., Corey E., Austen K. F. (1983). IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, β-hexosaminidase, and histamine from cultured bone marrow-derived mouse mast cells. J. Exp. Med. 157, 189–20110.1084/jem.157.1.189 PubMed DOI PMC

Renkawitz J., Schumann K., Weber M., Lämmermann T., Pflicke H., Piel M., Polleux J., Spatz J. P., Sixt M. (2009). Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–144310.1038/ncb1992 PubMed DOI

Rivera J., Proia R. L., Olivera A. (2008). The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–76310.1038/nri2400 PubMed DOI PMC

Romagnani P., de Paulis A., Beltrame C., Annunziato F., Dente V., Maggi E., Romagnani S., Marone G. (1999). Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am. J. Pathol. 155, 1195–120410.1016/S0002-9440(10)65222-4 PubMed DOI PMC

Romagnani S. (2002). Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38, 881–88510.1016/S0161-5890(02)00013-5 PubMed DOI

Roos J., DiGregorio P. J., Yeromin A. V., Ohlsen K., Lioudyno M., Zhang S., Safrina O., Kozak J. A., Wagner S. L., Cahalan M. D., Velicelebi G., Stauderman K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–44510.1083/jcb.200502019 PubMed DOI PMC

Roskoski R., Jr. (2005). Signaling by Kit protein-tyrosine kinase-the stem cell factor receptor. Biochem. Biophys. Res. Commun. 337, 1–1310.1016/j.bbrc.2005.08.055 PubMed DOI

Ruschpler P., Lorenz P., Eichler W., Koczan D., Hanel C., Scholz R., Melzer C., Thiesen H. J., Stiehl P. (2003). High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R241–R25210.1186/ar783 PubMed DOI PMC

Sabroe I., Lloyd C. M., Whyte M. K., Dower S. K., Williams T. J., Pease J. E. (2002). Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 19, 350–35510.1183/09031936.02.00253602 PubMed DOI PMC

Saito H., Kato A., Matsumoto K., Okayama Y. (2006). Culture of human mast cells from peripheral blood progenitors. Nat. Protoc. 1, 2178–218310.1038/nprot.2006.344 PubMed DOI

Samayawardhena L. A., Hu J., Stein P. L., Craig A. W. (2006). Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor. Cell. Signal. 18, 1447–145410.1016/j.cellsig.2005.11.005 PubMed DOI

Samayawardhena L. A., Kapur R., Craig A. W. (2007). Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood 109, 3679–368610.1182/blood-2006-11-057315 PubMed DOI PMC

Samayawardhena L. A., Pallen C. J. (2008). Protein-tyrosine phosphatase α regulates stem cell factor-dependent c-Kit activation and migration of mast cells. J. Biol. Chem. 283, 29175–2918510.1074/jbc.M804077200 PubMed DOI PMC

Sasaki A. T., Firtel R. A. (2006). Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur. J. Cell Biol. 85, 873–89510.1016/j.ejcb.2006.04.007 PubMed DOI

Sawada J., Shimizu S., Tamatani T., Kanegasaki S., Saito H., Tanaka A., Kambe N., Nakahata T., Matsuda H. (2005). Stem cell factor has a suppressive activity to IgE-mediated chemotaxis of mast cells. J. Immunol. 174, 3626–3632 PubMed

Schwab S. R., Pereira J. P., Matloubian M., Xu Y., Huang Y., Cyster J. G. (2005). Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–173910.1126/science.1113640 PubMed DOI

Scott K., Bradding P. (2005). Human mast cell chemokines receptors: implications for mast cell tissue localization in asthma. Clin. Exp. Allergy 35, 693–69710.1111/j.1365-2222.2005.02277.x PubMed DOI

Shiraishi Y., Asano K., Nakajima T., Oguma T., Suzuki Y., Shiomi T., Sayama K., Niimi K., Wakaki M., Kagyo J., Ikeda E., Hirai H., Yamaguchi K., Ishizaka A. (2005). Prostaglandin D2-induced eosinophilic airway inflammation is mediated by CRTH2 receptor. J. Pharmacol. Exp. Ther. 312, 954–96010.1124/jpet.104.078212 PubMed DOI

Sieh M., Batzer A., Schlessinger J., Weiss A. (1994). GRB2 and phospholipase C-γ1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell Biol. 14, 4435–4442 PubMed PMC

Smith J. A., Samayawardhena L. A., Craig A. W. (2010). Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell. Signal. 22, 427–43610.1016/j.cellsig.2009.10.014 PubMed DOI

Subramanian K. K., Jia Y., Zhu D., Simms B. T., Jo H., Hattori H., You J., Mizgerd J. P., Luo H. R. (2007). Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109, 4028–403710.1182/blood-2006-10-055319 PubMed DOI PMC

Sullivan R., Price L. S., Koffer A. (1999). Rho controls cortical F-actin disassembly in addition to, but independently of, secretion in mast cells. J. Biol. Chem. 274, 38140–3814610.1074/jbc.274.53.38140 PubMed DOI

Takeda K., Sasaki A. T., Ha H., Seung H. A., Firtel R. A. (2007). Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J. Biol. Chem. 282, 11874–1188410.1074/jbc.M700733200 PubMed DOI

Taub D., Dastych J., Inamura N., Upton J., Kelvin D., Metcalfe D., Oppenheim J. (1995). Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J. Immunol. 154, 2393–2402 PubMed

Taylor M. L., Dastych J., Sehgal D., Sundstrom M., Nilsson G., Akin C., Mage R. G., Metcalfe D. D. (2001). The Kit-activating mutation D816V enhances stem cell factor–dependent chemotaxis. Blood 98, 1195–119910.1182/blood.V98.2.467 PubMed DOI

Timokhina I., Kissel H., Stella G., Besmer P. (1998). Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. EMBO J. 17, 6250–626210.1093/emboj/17.21.6250 PubMed DOI PMC

Toda A., Yokomizo T., Shimizu T. (2002). Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 68–69, 575–585.10.1016/S0090-6980(02)00056-4 PubMed DOI

Toda M., Dawson M., Nakamura T., Munro P. M., Richardson R. M., Bailly M., Ono S. J. (2004). Impact of engagement of FcεRI and CC chemokine receptor 1 on mast cell activation and motility. J. Biol. Chem. 279, 48443–4844810.1074/jbc.M408725200 PubMed DOI

Trub T., Frantz J. D., Miyazaki M., Band H., Shoelson S. E. (1997). The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–90210.1074/jbc.272.2.894 PubMed DOI

Tsai M., Takeishi T., Thompson H., Langley K. E., Zsebo K. M., Metcalfe D. D., Geissler E. N., Galli S. J. (1991). Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc. Natl. Acad. Sci. U.S.A. 88, 6382–638610.1073/pnas.88.14.6382 PubMed DOI PMC

Tůmová M., Koffer A., Šimíček M., Dráberova L., Dráber P. (2010). The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur. J. Immunol. 40, 3235–324510.1002/eji.201040403 PubMed DOI

Ueda S., Mizuki M., Ikeda H., Tsujimura T., Matsumura I., Nakano K., Daino H., Honda Z. Z., Sonoyama J., Shibayama H., Sugahara H., Machii T., Kanakura Y. (2002). Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor-induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood 99, 3342–334910.1182/blood-2001-11-0117 PubMed DOI

Urtz N., Olivera A., Bofill-Cardona E., Csonga R., Billich A., Mechtcheriakova D., Bornancin F., Woisetschläger M., Rivera J., Baumruker T. (2004). Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with Lyn kinase. Mol. Cell Biol. 24, 8765–877710.1128/MCB.24.19.8765-8777.2004 PubMed DOI PMC

Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B. S., Hořejší V., Malissen M., Dráber P. (2004). Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–101310.1084/jem.20041213 PubMed DOI PMC

Wang D., Dubois R. N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–19310.1038/nrc2809 PubMed DOI PMC

Wang X. S., Lau H. Y. (2006). Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61, 503–50610.1111/j.1398-9995.2006.01043.x PubMed DOI

Wang Y., Chen C. L., Iijima M. (2011). Signaling mechanisms for chemotaxis. Dev. Growth Differ. 53, 495–50210.1111/j.1440-169X.2010.01235.x PubMed DOI PMC

Weller C. L., Collington S. J., Brown J. K., Miller H. R., Al-Kashi A., Clark P., Jose P. J., Hartnell A., Williams T. J. (2005). Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med. 201, 1961–197110.1084/jem.20042407 PubMed DOI PMC

Weller C. L., Collington S. J., Hartnell A., Conroy D. M., Kaise T., Barker J. E., Wilson M. S., Taylor G. W., Jose P. J., Williams T. J. (2007). Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Natl. Acad. Sci. U.S.A. 104, 11712–1171710.1073/pnas.0701700104 PubMed DOI PMC

Wrzesinski S. H., Wan Y. Y., Flavell R. A. (2007). Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin. Cancer Res. 13, 5262–527010.1158/1078-0432.CCR-07-1157 PubMed DOI

Yamamoto Y., Otani S., Hirai H., Nagata K., Aritake K., Urade Y., Narumiya S., Yokozeki H., Nakamura M., Satoh T. (2011). Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. Am. J. Pathol. 179, 302–31410.1016/j.ajpath.2011.03.047 PubMed DOI PMC

Yamashita T., Mao S.-Y., Metzger H. (1994). Aggregation of the high-affinity IgE receptor and enhanced activity of p53/p56lyn protein-tyrosine kinase. Proc. Natl. Acad. Sci. U.S.A. 91, 11251–1125510.1073/pnas.91.23.11251 PubMed DOI PMC

Yokomizo T. (2011). Leukotriene B4 receptors: novel roles in immunological regulations. Adv. Enzyme Regul. 51, 59–6410.1016/j.advenzreg.2010.08.002 PubMed DOI

Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. (1997). A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–62410.1038/42506 PubMed DOI

Yokomizo T., Kato K., Terawaki K., Izumi T., Shimizu T. (2000). A second leukotriene B4 receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–43210.1084/jem.192.3.421 PubMed DOI PMC

Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. (1998). LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–9210.1016/S0092-8674(00)80918-6 PubMed DOI

Zhong H., Shlykov S. G., Molina J. G., Sanborn B. M., Jacobson M. A., Tilley S. L., Blackburn M. R. (2003). Activation of murine lung mast cells by the adenosine A3 receptor. J. Immunol. 171, 338–345 PubMed

Zhu M., Liu Y., Koonpaew S., Granillo O., Zhang W. (2004). Positive and negative regulation of FcεRI-mediated signaling by adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–100010.1084/jem.20031816 PubMed DOI PMC

Zlotnik A., Yoshie O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121–12710.1016/S1074-7613(00)80165-X PubMed DOI

Zudaire E., Martínez A., Garayoa M., Pío R., Kaur G., Woolhiser M. R., Metcalfe D. D., Hook W. A., Siraganian R. P., Guise T. A., Chirgwin J. M., Cuttitta F. (2006). Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am. J. Pathol. 168, 280–29110.2353/ajpath.2006.050291 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions

. 2022 Nov ; 298 (11) : 102497. [epub] 20220915

Mast Cell Migration and Chemotaxis Assayed by Microscopy

Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy

. 2019 ; 10 () : 205. [epub] 20190212

Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells

. 2019 ; 10 () : 3068. [epub] 20200114

Positive and Negative Regulatory Roles of C-Terminal Src Kinase (CSK) in FcεRI-Mediated Mast Cell Activation, Independent of the Transmembrane Adaptor PAG/CSK-Binding Protein

. 2018 ; 9 () : 1771. [epub] 20180802

Signal transduction and chemotaxis in mast cells

. 2016 May 05 ; 778 () : 11-23. [epub] 20150502

Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling

. 2014 Dec 01 ; 34 (23) : 4285-300. [epub] 20140922

Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis

. 2013 Apr 05 ; 288 (14) : 9801-9814. [epub] 20130226

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...