Mast cell chemotaxis - chemoattractants and signaling pathways
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
22654878
PubMed Central
PMC3360162
DOI
10.3389/fimmu.2012.00119
Knihovny.cz E-zdroje
- Klíčová slova
- IgE receptor, cell migration, chemoattractant, chemotaxis, mast cell, plasma membrane, signal transduction,
- Publikační typ
- časopisecké články MeSH
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E(2) and D(2), leukotriene (LT) B(4), LTD(4), and LTC(4), and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1-3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Zobrazit více v PubMed
Abonia J. P., Austen K. F., Rollins B. J., Joshi S. K., Flavell R. A., Kuziel W. A., Koni P. A., Gurish M. F. (2005). Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105, 4308–431310.1182/blood-2004-09-3578 PubMed DOI PMC
Amin K., Janson C., Harvima I., Venge P., Nilsson G. (2005). CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J. Allergy Clin. Immunol. 116, 1383–138610.1016/j.jaci.2005.08.053 PubMed DOI
Ancellin N., Colmont C., Su J., Li Q., Mittereder N., Chae S. S., Stefansson S., Liau G., Hla T. (2002). Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J. Biol. Chem. 277, 6667–667510.1074/jbc.M102841200 PubMed DOI
Andrew N., Insall R. H. (2007). Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat. Cell Biol. 9, 193–20010.1038/ncb1536 PubMed DOI
Angeli V., Staumont D., Charbonnier A. S., Hammad H., Gosset P., Pichavant M., Lambrecht B. N., Capron M., Dombrowicz D., Trottein F. (2004). Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. J. Immunol. 172, 3822–3829 PubMed
Aung G., Niyonsaba F., Ushio H., Kajiwara N., Saito H., Ikeda S., Ogawa H., Okumura K. (2011). Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology 132, 527–53910.1111/j.1365-2567.2010.03395.x PubMed DOI PMC
Bautz F., Denzlinger C., Kanz L., Mohle R. (2001). Chemotaxis and transendothelial migration of CD34+ hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood 97, 3433–344010.1182/blood.V97.11.3433 PubMed DOI
Berenbaum F., Humbert L., Bereziat G., Thirion S. (2003). Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. J. Biol. Chem. 278, 13680–1368710.1074/jbc.M211570200 PubMed DOI
Boehme S. A., Franz-Bacon K., Chen E. P., Ly T. W., Kawakami Y., Bacon K. B. (2009). Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2). Int. Immunol. 21, 621–63210.1093/intimm/dxp031 PubMed DOI
Boyce J. A. (2007). Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–18510.1111/j.1600-065X.2007.00512.x PubMed DOI
Brdička T., Imrich M., Angelisová P., Brdičková N., Horváth O., Špička J., Hilgert I., Lusková P., Dráber P., Novák P., Engels N., Wienands J., Simeoni L., Osterreicher J., Aguado E., Malissen M., Schraven B., Hořejší V. (2002). Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–162610.1084/jem.20021405 PubMed DOI PMC
Brightling C. E., Ammit A. J., Kaur D., Black J. L., Wardlaw A. J., Hughes J. M., Bradding P. (2005a). The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med. 171, 1103–110810.1164/rccm.200409-1220OC PubMed DOI
Brightling C. E., Kaur D., Berger P., Morgan A. J., Wardlaw A. J., Bradding P. (2005b). Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. J. Leukoc. Biol. 77, 759–76610.1189/jlb.0904511 PubMed DOI
Brown R. A., Spina D., Page C. P. (2008). Adenosine receptors and asthma. Br. J. Pharmacol. 153, S446–S45610.1038/bjp.2008.22 PubMed DOI PMC
Brzezińska-Blaszczyk E., Pietrzak A., Misiak-Tloczek A. H. (2007). Tumor necrosis factor (TNF) is a potent rat mast cell chemoattractant. J. Interferon Cytokine Res. 27, 911–92010.1089/jir.2006.0158 PubMed DOI
Buday L., Egan S. E., Rodriguez V. P., Cantrell D. A., Downward J. (1994). A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in Ras activation in T cells. J. Biol. Chem. 269, 9019–9023 PubMed
Byrne S. N, Limón-Flores, A. Y., Ullrich S. E. (2008). Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J. Immunol. 180, 4648–4655 PubMed PMC
Chabot B., Stephenson D. A., Chapman V. M., Besmer P., Bernstein A. (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88–8910.1038/335088a0 PubMed DOI
Charest P. G., Firtel R. A. (2010). “TORCing” neutrophil chemotaxis. Dev. Cell 19, 795–79610.1016/j.devcel.2010.11.017 PubMed DOI PMC
Charest P. G., Shen Z., Lakoduk A., Sasaki A. T., Briggs S. P., Firtel R. A. (2010). A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev. Cell 18, 737–74910.1016/j.devcel.2010.03.017 PubMed DOI PMC
Chen L., Iijima M., Tang M., Landree M. A., Huang Y. E., Xiong Y., Iglesias P. A., Devreotes P. N. (2007). PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603–61410.1016/j.devcel.2007.03.005 PubMed DOI PMC
Cho K. J., Seo J. M., Lee M. G., Kim J. H. (2010). BLT2 Is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. J. Immunol. 185, 6329–633710.4049/jimmunol.1001213 PubMed DOI
Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. (1991). A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043–105110.1016/0092-8674(91)90556-E PubMed DOI
Collington S. J., Hallgren J., Pease J. E., Jones T. G., Rollins B. J., Westwick J., Austen K. F., Williams T. J., Gurish M. F., Weller C. L. (2010a). The role of the CCL2/CCR2 axis in mouse mast cell migration in vitro and in vivo. J. Immunol. 184, 6114–612310.4049/jimmunol.0904177 PubMed DOI PMC
Collington S. J., Westwick J., Williams T. J., Weller C. L. (2010b). The function of CCR3 on mouse bone marrow-derived mast cells in vitro. Immunology 129, 115–12410.1111/j.1365-2567.2009.03151.x PubMed DOI PMC
Collington S. J., Williams T. J., Weller C. L. (2011). Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol. 32, 478–48510.1016/j.it.2011.08.002 PubMed DOI
Cooper P. H., Stanworth D. R. (1976). Isolation of rat peritoneal mast cells in high yield and purity. Methods Cell. Biol. 14, 365–37810.1016/S0091-679X(08)60496-3 PubMed DOI
de Paulis A., Annunziato F., Di Gioia L., Romagnani S., Carfora M., Beltrame C., Marone G., Romagnani P. (2001) Expression of the chemokine receptor CCR3 on human mast cells. Int. Arch. Allergy Immunol. 124, 146–15010.1159/000053694 PubMed DOI
Dorsam R. T., Gutkind J. S. (2007). G-protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79–9410.1038/nrc2069-c2 PubMed DOI
Dráber P., Dráberová L. (2005). Lifting the fog in store-operated Ca2+ entry. Trends Immunol. 26, 621–62410.1016/j.it.2005.09.006 PubMed DOI
Draber P., Halova I., Levi-Schaffer F., Draberova L. (2012). Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immun. 2:95.10.3389/fimmu.2011.00095 PubMed DOI PMC
Duffy S. M., Cruse G., Brightling C. E., Bradding P. (2007). Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur. J. Immunol. 37, 1653–166210.1002/eji.200637024 PubMed DOI PMC
Eiseman E., Bolen J. B. (1992). Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355, 78–8010.1038/355078a0 PubMed DOI
Ferguson G. J., Milne L., Kulkarni S., Sasaki T., Walker S., Andrews S., Crabbe T., Finan P., Jones G., Jackson S., Camps M., Rommel C., Wymann M., Hirsch E., Hawkins P., Stephens L. (2007). PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol. 9, 86–9110.1038/ncb1517 PubMed DOI
Feuser K., Thon K.-P., Bischoff S. C., Lorentz A. (2012). Human intestinal mast cells are a potent source of multiple chemokines. Cytokine 58, 178–18510.1016/j.cyto.2012.01.001 PubMed DOI
Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. (1998). LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–62610.1016/S1074-7613(00)80659-7 PubMed DOI
Fox C. C., Dvorak A. M., Peters S. P., Kagey-Sobotka A., Lichtenstein L. M. (1985). Isolation and characterization of human intestinal mucosal mast cells. J. Immunol. 135, 483–491 PubMed
Funamoto S., Meili R., Lee S., Parry L., Firtel R. A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–62310.1016/S0092-8674(02)00755-9 PubMed DOI
Funamoto S., Milan K., Meili R., Firtel R. A. (2001). Role of phosphatidylinositol 3’ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J. Cell Biol. 153, 795–81010.1083/jcb.153.4.795 PubMed DOI PMC
Furumoto Y., Brooks S., Olivera A., Takagi Y., Miyagishi M., Taira K., Casellas R., Beaven M. A., Gilfillan A. M., Rivera J. (2006). Cutting edge: lentiviral short hairpin RNA silencing of PTEN in human mast cells reveals constitutive signals that promote cytokine secretion and cell survival. J. Immunol. 176, 5167–5171 PubMed
Ghebrehiwet B., Kew R. R., Gruber B. L., Marchese M. J., Peerschke E. I., Reid K. B. (1995). Murine mast cells express two types of C1q receptors that are involved in the induction of chemotaxis and chemokinesis. J. Immunol. 155, 2614–2619 PubMed
Gilliland L. K., Schieven G. L., Norris N. A., Kanner S. B., Aruffo A., Ledbetter J. A. (1992). Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLCγ1 SH2 domains. J. Biol. Chem. 267, 13610–13616 PubMed
Gomi K., Zhu F. G., Marshall J. S. (2000). Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J. Immunol. 165, 6545–6552 PubMed
Gruber B. L., Marchese M. J., Kew R. R. (1994). Transforming growth factor-β1 mediates mast cell chemotaxis. J. Immunol. 152, 5860–5867 PubMed
Haddon D. J., Antignano F., Hughes M. R., Blanchet M. R., Zbytnuik L., Krystal G., McNagny K. M. (2009). SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J. Immunol. 183, 228–23610.4049/jimmunol.0900427 PubMed DOI
Hájková Z., Bugajev V., Dráberová E., Vinopal S., Dráberová L., Janáček J., Dráber P., Dráber P. (2011). STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 186, 913–92310.4049/jimmunol.1002074 PubMed DOI
Hallgren J., Gurish M. F. (2007). Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol. Rev. 217, 8–1810.1111/j.1600-065X.2007.00502.x PubMed DOI
Hallgren J., Gurish M. F. (2011). Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716, 14–2810.1007/978-1-4419-9533-9_2 PubMed DOI PMC
Hallgren J., Jones T. G., Abonia J. P., Xing W., Humbles A., Austen K. F., Gurish M. F. (2007). Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors. Proc. Natl. Acad. Sci. U.S.A. 104, 20478–2048310.1073/pnas.0709651104 PubMed DOI PMC
Hammad H., de Heer H. J., Soullie T., Hoogsteden H. C., Trottein F., Lambrecht B. N. (2003). Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J. Immunol. 171, 3936–3940 PubMed
Hartmann K., Henz B. M., Kruger-Krasagakes S., Kohl J., Burger R., Guhl S., Haase I., Lippert U., Zuberbier T. (1997). C3a and C5a stimulate chemotaxis of human mast cells. Blood 89, 2863–2870 PubMed
Heit B., Liu L., Colarusso P., Puri K. D., Kubes P. (2008). PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–21410.1242/jcs.020412 PubMed DOI
Heit B., Tavener S., Raharjo E., Kubes P. (2002). An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–10210.1083/jcb.200202114 PubMed DOI PMC
Hirai H., Tanaka K., Yoshie O., Ogawa K., Kenmotsu K., Takamori Y., Ichimasa M., Sugamura K., Nakamura M., Takano S., Nagata K. (2001). Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 193, 255–26110.1084/jem.193.2.255 PubMed DOI PMC
Huang Y. E., Iijima M., Parent C. A., Funamoto S., Firtel R. A., Devreotes P. (2003). Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol. Biol. Cell 14, 1913–192210.1091/mbc.E03-06-0362 PubMed DOI PMC
Humbles A. A., Lu B., Friend D. S., Okinaga S., Lora J., Al-Garawi A., Martin T. R., Gerard N. P., Gerard C. (2002). The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl. Acad. Sci. U.S.A 99, 1479–148410.1073/pnas.261462598 PubMed DOI PMC
Ichikawa A., Sugimoto Y., Negishi M. (1996). Molecular aspects of the structures and functions of the prostaglandin E receptors. J. Lipid Mediat. Cell Signal. 14, 83–8710.1016/0929-7855(96)00512-3 PubMed DOI
Iijima M., Huang Y. E., Devreotes P. (2002). Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–47810.1016/S1534-5807(02)00292-7 PubMed DOI
Iijima M., Huang Y. E., Luo H. R., Vazquez F., Devreotes P. N. (2004). Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–1661310.1074/jbc.M312098200 PubMed DOI
Inamura H., Kurosawa M., Okano A., Kayaba H., Majima M. (2002). Expression of the interleukin-8 receptors CXCR1 and CXCR2 on cord-blood-derived cultured human mast cells. Int. Arch. Allergy Immunol. 128, 142–15010.1159/000059405 PubMed DOI
Insall R. H. (2010). Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nat. Rev. Mol. Cell Biol. 11, 453–45810.1038/nrm2905 PubMed DOI
Ishiai M., Kurosaki M., Inabe K., Chan A. C., Sugamura K., Kurosaki T. (2000). Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J. Exp. Med. 192, 847–85610.1084/jem.192.6.847 PubMed DOI PMC
Ishizuka T., Okajima F., Ishiwara M., Iizuka K., Ichimonji I., Kawata T., Tsukagoshi H., Dobashi K., Nakazawa T., Mori M. (2001). Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J. Immunol. 167, 2298–2304 PubMed
Janssen E., Zhu M., Zhang W., Koonpaew S., Zhang W. (2003). LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–12310.1038/nrm1018 PubMed DOI
Jensen B. M., Beaven M. A., Iwaki S., Metcalfe D. D., Gilfillan A. M. (2008). Concurrent inhibition of kit- and FcεRI-mediated signaling: coordinated suppression of mast cell activation. J. Pharmacol. Exp. Ther. 324, 128–13810.1124/jpet.107.125237 PubMed DOI PMC
Jiang Y., Borrelli L. A., Kanaoka Y., Bacskai B. J., Boyce J. A. (2007). CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110, 3263–327010.1182/blood-2007-07-100990 PubMed DOI PMC
Jiang Y., Kanaoka Y., Feng C., Nocka K., Rao S., Boyce J. A. (2006). Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. J. Immunol. 177, 2755–2759 PubMed
Jolly P. S., Bektas M., Olivera A., Gonzalez-Espinosa C., Proia R. L., Rivera J., Milstien S., Spiegel S. (2004). Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959–97010.1084/jem.20030648 PubMed DOI PMC
Jolly P. S., Bektas M., Watterson K. R., Sankala H., Payne S. G., Milstien S., Spiegel S. (2005). Expression of SphK1 impairs degranulation and motility of RBL-2H3 mast cells by desensitizing S1P receptors. Blood 105, 4736–474210.1182/blood-2004-12-4686 PubMed DOI PMC
Juremalm M., Hjertson M., Olsson N., Harvima I., Nilsson K., Nilsson G. (2000). The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1α acts as a mast cell chemotaxin. Eur. J. Immunol. 30, 3614–362210.1002/1521-4141(200012)30:12<3614::AID-IMMU3614>3.0.CO;2-B PubMed DOI
Juremalm M., Nilsson G. (2005). Chemokine receptor expression by mast cells. Chem. Immunol. Allergy 87, 130–14410.1159/000087640 PubMed DOI
Juremalm M., Olsson N., Nilsson G. (2002). Selective CCL5/RANTES-induced mast cell migration through interactions with chemokine receptors CCR1 and CCR4. Biochem. Biophys. Res. Commun. 297, 480–48510.1016/S0006-291X(02)02244-1 PubMed DOI
Kanegasaki S., Nomura Y., Nitta N., Akiyama S., Tamatani T., Goshoh Y., Yoshida T., Sato T., Kikuchi Y. (2003). A novel optical assay system for the quantitative measurement of chemotaxis. J. Immunol. Methods 282, 1–1110.1016/j.jim.2003.07.008 PubMed DOI
Kaplan A. P. (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol. 124, 423–43110.1159/000053751 PubMed DOI
Kay L. J., Yeo W. W., Peachell P. T. (2006). Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br. J. Pharmacol. 147, 707–71310.1038/sj.bjp.0706664 PubMed DOI PMC
Kay R. R., Langridge P., Traynor D., Hoeller O. (2008). Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9, 455–46310.1038/nrm2419-c2 PubMed DOI
Kim M. S., Kuehn H. S., Metcalfe D. D., Gilfillan A. M. (2008a). Activation and function of the mTORC1 pathway in mast cells. J. Immunol. 180, 4586–4595 PubMed PMC
Kim M. S., Rådinger M., Gilfillan A. M. (2008b). The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 29, 493–50110.1016/j.it.2008.07.004 PubMed DOI PMC
Kitaura J., Eto K., Kinoshita T., Kawakami Y., Leitges M., Lowell C. A., Kawakami T. (2005a). Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. J. Immunol. 174, 4495–4504 PubMed
Kitaura J., Kinoshita T., Matsumoto M., Chung S., Kawakami Y., Leitges M., Wu D., Lowell C. A., Kawakami T. (2005b). IgE- and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood 105, 32223229.10.1182/blood-2004-11-4205 PubMed DOI PMC
Kolsch V., Charest P. G., Firtel R. A. (2008). The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–55910.1242/jcs.023333 PubMed DOI PMC
Kortholt A., Kataria R., Keizer-Gunnink I., van Egmond W. N., Khanna A., van Haastert P. J. (2011). Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification. EMBO Rep. 12, 1273–127910.1038/embor.2011.210 PubMed DOI PMC
Kramer R. M., Sharp J. D. (1995). Recent insights into the structure, function and biology of cPLA2. Agents Actions Suppl. 46, 65–76 PubMed
Kramer R. M., Sharp J. D. (1997). Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett. 410, 49–5310.1016/S0014-5793(97)00322-0 PubMed DOI
Kuehn H. S., Gilfillan A. M. (2007). G protein-coupled receptors and the modification of FcεRI-mediated mast cell activation. Immunol. Lett. 113, 59–6910.1016/j.imlet.2007.08.007 PubMed DOI PMC
Kuehn H. S., Jung M. Y., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2011a). Distinct PGE2-responder and non-responder phenotypes in human mast cell populations: “all or nothing” enhancement of antigen-dependent mediator release. Immunol. Lett. 141, 45–5410.1016/j.imlet.2011.07.002 PubMed DOI PMC
Kuehn H. S., Jung M. Y., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2011b). Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J. Biol. Chem. 286, 391–40210.1074/jbc.M110.164772 PubMed DOI PMC
Kuehn H. S., Rådinger M., Brown J. M., Ali K., Vanhaesebroeck B., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2010). Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J. Cell Sci. 123, 2576–258510.1242/jcs.071043 PubMed DOI PMC
Kuehn H. S., Swindle E. J., Kim M. S., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2008). The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J. Immunol. 181, 7706–7712 PubMed PMC
Kushnir-Sukhov N. M., Gilfillan A. M., Coleman J. W., Brown J. M., Bruening S., Toth M., Metcalfe D. D. (2006). 5-hydroxytryptamine induces mast cell adhesion and migration. J. Immunol. 177, 6422–6432 PubMed
Lee S., Comer F. I., Sasaki A., McLeod I. X., Duong Y., Okumura K., Yates J. R., III, Parent C. A., Firtel R. A. (2005). TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell 16, 4572–458310.1091/mbc.E05-04-0342 PubMed DOI PMC
Lewis R. A., Soter N. A., Diamond P. T., Austen K. F., Oates J. A., Roberts L. J. (1982). Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 129, 1627–1631 PubMed
Linnekin D., DeBerry C. S., Mou S. (1997). Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J. Biol. Chem. 272, 27450–2745510.1074/jbc.272.43.27450 PubMed DOI
Liou J., Kim M. L., Heo W. D., Jones J. T., Myers J. W., Ferrell J. E., Jr., Meyer T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–124110.1016/j.cub.2005.05.055 PubMed DOI PMC
Liu H., Toman R. E., Goparaju S. K., Maceyka M., Nava V. E., Sankala H., Payne S. G., Bektas M., Ishii I., Chun J., Milstien S., Spiegel S. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. 278, 40330–4033610.1074/jbc.M207074200 PubMed DOI
Liu L., Das S., Losert W., Parent C. A. (2010). mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev. Cell 19, 845–85710.1016/j.devcel.2010.11.004 PubMed DOI PMC
Liu L., Parent C. A. (2011). Review series: TOR kinase complexes and cell migration. J. Cell Biol. 194, 815–82410.1083/jcb.201102090 PubMed DOI PMC
Liu S. K., Fang N., Koretzky G. A., McGlade C. J. (1999). The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–7510.1016/S0960-9822(00)80061-5 PubMed DOI
Lloyd C. M., Brown Z. (2006). Chemokine receptors: therapeutic potential in asthma. Treat. Respir. Med. 5, 159–16610.2165/00151829-200605030-00002 PubMed DOI
Loovers H. M., Postma M., Keizer-Gunnink I., Huang Y. E., Devreotes P. N., van Haastert P. J. (2006). Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol. Biol. Cell 17, 1503–151310.1091/mbc.E05-09-0825 PubMed DOI PMC
Lundeen K. A., Sun B., Karlsson L., Fourie A. M. (2006). Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J. Immunol. 177, 3439–3447 PubMed
Mathes C., Fleig A., Penner R. (1998). Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J. Biol. Chem. 273, 25020–2503010.1074/jbc.273.39.25020 PubMed DOI
Matsui K., Nishikawa A. (2005). Percutaneous application of peptidoglycan from Staphylococcus aureus induces an increase in mast cell numbers in the dermis of mice. Clin. Exp. Allergy 35, 382–38710.1111/j.1365-2222.2005.02331.x PubMed DOI
McCloskey M. A., Fan Y., Luther S. (1999). Chemotaxis of rat mast cells toward adenine nucleotides. J. Immunol. 163, 970–977 PubMed
Meininger C. J., Yano H., Rottapel R., Bernstein A., Zsebo K. M., Zetter B. R. (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963 PubMed
Melendez A. J., Khaw A. K. (2002). Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem. 277, 17255–1726210.1074/jbc.M204886200 PubMed DOI
Mellor E. A., Frank N., Soler D., Hodge M. R., Lora J. M., Austen K. F., Boyce J. A. (2003). Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc. Natl. Acad. Sci. U.S.A. 100, 11589–1159310.1073/pnas.2034927100 PubMed DOI PMC
Misiak-Tloczek A., Brzezińska-Blaszczyk E. (2009). IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways. APMIS 117, 558–56710.1111/j.1600-0463.2009.02518.x PubMed DOI
Mizugishi K., Yamashita T., Olivera A., Miller G. F., Spiegel S., Proia R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol. 25, 11113–1112110.1128/MCB.25.24.11113-11121.2005 PubMed DOI PMC
Möhle R., Bautz F., Denzlinger C., Kanz L. (2001). Transendothelial migration of hematopoietic progenitor cells. Role of chemotactic factors. Ann. N. Y. Acad. Sci. 938, 26–3410.1111/j.1749-6632.2001.tb03571.x PubMed DOI
Narumiya S., Watanabe N. (2009). Migration without a clutch. Nat. Cell Biol. 11, 1394–139610.1038/ncb1209-1394 PubMed DOI
Nataraj C., Thomas D. W., Tilley S. L., Nguyen M. T., Mannon R., Koller B. H., Coffman T. M. (2001). Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. J. Clin. Invest. 108, 1229–123510.1172/JCI13640 PubMed DOI PMC
Nguyen J. T., Porter M., Amoui M., Miller W. T., Zuckermann R. N., Lim W. A. (2000). Improving SH3 domain ligand selectivity using a non-natural scaffold. Chem. Biol. 7, 463–47310.1016/S1074-5521(00)00130-7 PubMed DOI
Nilsson G., Butterfield J. H., Nilsson K., Siegbahn A. (1994). Stem cell factor is a chemotactic factor for human mast cells. J. Immunol. 153, 3717–3723 PubMed
Nilsson G., Hjertson M., Andersson M., Greiff L., Svensson C., Nilsson K., Siegbahn A. (1998). Demonstration of mast-cell chemotactic activity in nasal lavage fluid: characterization of one chemotaxin as c-kit ligand, stem cell factor. Allergy 53, 874–87910.1111/j.1398-9995.1998.tb03841.x PubMed DOI
Nilsson G., Johnell M., Hammer C. H., Tiffany H. L., Nilsson K., Metcalfe D. D., Siegbahn A., Murphy P. M. (1996). C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J. Immunol. 157, 1693–1698 PubMed
Nilsson G., Metcalfe D. D., Taub D. D. (2000). Demonstration that platelet-activating factor is capable of activating mast cells and inducing a chemotactic response. Immunology 99, 314–31910.1046/j.1365-2567.2000.00972.x PubMed DOI PMC
Nishio M., Watanabe K., Sasaki J., Taya C., Takasuga S., Iizuka R., Balla T., Yamazaki M., Watanabe H., Itoh R., Kuroda S., Horie Y., Forster I., Mak T. W., Yonekawa H., Penninger J. M., Kanaho Y., Suzuki A., Sasaki T. (2007). Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 9, 36–4410.1038/ncb1515 PubMed DOI
Ochi H., Hirani W. M., Yuan Q., Friend D. S., Austen K. F., Boyce J. A. (1999). T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J. Exp. Med. 190, 267–28010.1084/jem.190.2.267 PubMed DOI PMC
Ohnishi H., Miyahara N., Gelfand E. W. (2008). The role of leukotriene B4 in allergic diseases. Allergol. Int. 57, 291–29810.2332/allergolint.08-RAI-0019 PubMed DOI
Okayama Y., Kawakami T. (2006). Development, migration, and survival of mast cells. Immunol. Res. 34, 97–11510.1385/IR:34:2:97 PubMed DOI PMC
Oliveira S. H., Lukacs N. W. (2001). Stem cell factor and IgE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm. Res. 50, 168–17410.1007/s000110050741 PubMed DOI
Olivera A. (2008). Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. Prostaglandins Other Lipid Mediat. 86, 1–1110.1016/j.prostaglandins.2008.02.005 PubMed DOI PMC
Olivera A., Kohama T., Edsall L., Nava V., Cuvillier O., Poulton S., Spiegel S. (1999). Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 147, 545–55810.1083/jcb.147.3.545 PubMed DOI PMC
Olivera A., Mizugishi K., Tikhonova A., Ciaccia L., Odom S., Proia R. L., Rivera J. (2007). The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26, 287–29710.1016/j.immuni.2007.02.008 PubMed DOI
Olivera A., Rivera J. (2005). Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J. Immunol. 174, 1153–1158 PubMed
Olivera A., Spiegel S. (2001). Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins 64, 123–13410.1016/S0090-6980(01)00108-3 PubMed DOI
Olivera A., Urtz N., Mizugishi K., Yamashita Y., Gilfillan A. M., Furumoto Y., Gu H., Proia R. L., Baumruker T., Rivera J. (2006). IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J. Biol. Chem. 281, 2515–252510.1074/jbc.R600020200 PubMed DOI
Olsson N., Rak S., Nilsson G. (2000). Demonstration of mast cell chemotactic activity in bronchoalveolar lavage fluid collected from asthmatic patients before and during pollen season. J. Allergy Clin. Immunol. 105, 455–46110.1067/mai.2000.104380 PubMed DOI
Osher E., Weisinger G., Limor R., Tordjman K., Stern N. (2006). The 5 lipoxygenase system in the vasculature: emerging role in health and disease. Mol. Cell Endocrinol. 252, 201–20610.1016/j.mce.2006.03.038 PubMed DOI
Oskeritzian C. A., Alvarez S. E., Hait N. C., Price M. M., Milstien S., Spiegel S. (2008). Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111, 4193–420010.1182/blood-2007-09-115451 PubMed DOI PMC
Papadopoulos E. J., Fitzhugh D. J., Tkaczyk C., Gilfillan A. M., Sassetti C., Metcalfe D. D., Hwang S. T. (2000). Mast cells migrate, but do not degranulate, in response to fractalkine, a membrane-bound chemokine expressed constitutively in diverse cells of the skin. Eur. J. Immunol. 30, 2355–236110.1002/1521-4141(2000)30:8<2355::AID-IMMU2355>3.0.CO;2-# PubMed DOI
Papakonstanti E. A., Ridley A. J., Vanhaesebroeck B. (2007). The p110δ isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J. 26, 3050–306110.1038/sj.emboj.7601763 PubMed DOI PMC
Parravicini V., Gadina M., Kovarova M., Odom S., Gonzalez-Espinosa C., Furumoto Y., Saitoh S., Samelson L. E., O’Shea J. J., Rivera J. (2002). Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3, 741–748 PubMed
Peest U., Sensken S. C., Andreani P., Hanel P., Van Veldhoven P. P., Graler M. H. (2008). S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J. Cell Biochem. 104, 756–77210.1002/jcb.21665 PubMed DOI
Pietrzak A., Wierzbicki M., Wiktorska M., Brzezinska-Blaszczyk E. (2011). Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm. 2011, 427473.10.1155/2011/427473 PubMed DOI PMC
Poole T. J., Zetter B. R. (1983). Stimulation of rat peritoneal mast cell migration by tumor-derived peptides. Cancer Res. 43, 5857–5861 PubMed
Ralevic V., Burnstock G. (1998). Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 PubMed
Ramkumar V., Stiles G. L., Beaven M. A., Ali H. (1993). The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 268, 16887–16890 PubMed
Razin E., Cordon-Cardo C., Good R. A. (1981). Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc. Natl. Acad. Sci. U.S.A. 78, 2559–256110.1073/pnas.78.9.5793 PubMed DOI PMC
Razin E., Mencia-Huerta J. M., Stevens R. L., Lewis R. A., Liu F. T., Corey E., Austen K. F. (1983). IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, β-hexosaminidase, and histamine from cultured bone marrow-derived mouse mast cells. J. Exp. Med. 157, 189–20110.1084/jem.157.1.189 PubMed DOI PMC
Renkawitz J., Schumann K., Weber M., Lämmermann T., Pflicke H., Piel M., Polleux J., Spatz J. P., Sixt M. (2009). Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–144310.1038/ncb1992 PubMed DOI
Rivera J., Proia R. L., Olivera A. (2008). The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–76310.1038/nri2400 PubMed DOI PMC
Romagnani P., de Paulis A., Beltrame C., Annunziato F., Dente V., Maggi E., Romagnani S., Marone G. (1999). Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am. J. Pathol. 155, 1195–120410.1016/S0002-9440(10)65222-4 PubMed DOI PMC
Romagnani S. (2002). Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38, 881–88510.1016/S0161-5890(02)00013-5 PubMed DOI
Roos J., DiGregorio P. J., Yeromin A. V., Ohlsen K., Lioudyno M., Zhang S., Safrina O., Kozak J. A., Wagner S. L., Cahalan M. D., Velicelebi G., Stauderman K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–44510.1083/jcb.200502019 PubMed DOI PMC
Roskoski R., Jr. (2005). Signaling by Kit protein-tyrosine kinase-the stem cell factor receptor. Biochem. Biophys. Res. Commun. 337, 1–1310.1016/j.bbrc.2005.08.055 PubMed DOI
Ruschpler P., Lorenz P., Eichler W., Koczan D., Hanel C., Scholz R., Melzer C., Thiesen H. J., Stiehl P. (2003). High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R241–R25210.1186/ar783 PubMed DOI PMC
Sabroe I., Lloyd C. M., Whyte M. K., Dower S. K., Williams T. J., Pease J. E. (2002). Chemokines, innate and adaptive immunity, and respiratory disease. Eur. Respir. J. 19, 350–35510.1183/09031936.02.00253602 PubMed DOI PMC
Saito H., Kato A., Matsumoto K., Okayama Y. (2006). Culture of human mast cells from peripheral blood progenitors. Nat. Protoc. 1, 2178–218310.1038/nprot.2006.344 PubMed DOI
Samayawardhena L. A., Hu J., Stein P. L., Craig A. W. (2006). Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor. Cell. Signal. 18, 1447–145410.1016/j.cellsig.2005.11.005 PubMed DOI
Samayawardhena L. A., Kapur R., Craig A. W. (2007). Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood 109, 3679–368610.1182/blood-2006-11-057315 PubMed DOI PMC
Samayawardhena L. A., Pallen C. J. (2008). Protein-tyrosine phosphatase α regulates stem cell factor-dependent c-Kit activation and migration of mast cells. J. Biol. Chem. 283, 29175–2918510.1074/jbc.M804077200 PubMed DOI PMC
Sasaki A. T., Firtel R. A. (2006). Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur. J. Cell Biol. 85, 873–89510.1016/j.ejcb.2006.04.007 PubMed DOI
Sawada J., Shimizu S., Tamatani T., Kanegasaki S., Saito H., Tanaka A., Kambe N., Nakahata T., Matsuda H. (2005). Stem cell factor has a suppressive activity to IgE-mediated chemotaxis of mast cells. J. Immunol. 174, 3626–3632 PubMed
Schwab S. R., Pereira J. P., Matloubian M., Xu Y., Huang Y., Cyster J. G. (2005). Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–173910.1126/science.1113640 PubMed DOI
Scott K., Bradding P. (2005). Human mast cell chemokines receptors: implications for mast cell tissue localization in asthma. Clin. Exp. Allergy 35, 693–69710.1111/j.1365-2222.2005.02277.x PubMed DOI
Shiraishi Y., Asano K., Nakajima T., Oguma T., Suzuki Y., Shiomi T., Sayama K., Niimi K., Wakaki M., Kagyo J., Ikeda E., Hirai H., Yamaguchi K., Ishizaka A. (2005). Prostaglandin D2-induced eosinophilic airway inflammation is mediated by CRTH2 receptor. J. Pharmacol. Exp. Ther. 312, 954–96010.1124/jpet.104.078212 PubMed DOI
Sieh M., Batzer A., Schlessinger J., Weiss A. (1994). GRB2 and phospholipase C-γ1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell Biol. 14, 4435–4442 PubMed PMC
Smith J. A., Samayawardhena L. A., Craig A. W. (2010). Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell. Signal. 22, 427–43610.1016/j.cellsig.2009.10.014 PubMed DOI
Subramanian K. K., Jia Y., Zhu D., Simms B. T., Jo H., Hattori H., You J., Mizgerd J. P., Luo H. R. (2007). Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109, 4028–403710.1182/blood-2006-10-055319 PubMed DOI PMC
Sullivan R., Price L. S., Koffer A. (1999). Rho controls cortical F-actin disassembly in addition to, but independently of, secretion in mast cells. J. Biol. Chem. 274, 38140–3814610.1074/jbc.274.53.38140 PubMed DOI
Takeda K., Sasaki A. T., Ha H., Seung H. A., Firtel R. A. (2007). Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J. Biol. Chem. 282, 11874–1188410.1074/jbc.M700733200 PubMed DOI
Taub D., Dastych J., Inamura N., Upton J., Kelvin D., Metcalfe D., Oppenheim J. (1995). Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J. Immunol. 154, 2393–2402 PubMed
Taylor M. L., Dastych J., Sehgal D., Sundstrom M., Nilsson G., Akin C., Mage R. G., Metcalfe D. D. (2001). The Kit-activating mutation D816V enhances stem cell factor–dependent chemotaxis. Blood 98, 1195–119910.1182/blood.V98.2.467 PubMed DOI
Timokhina I., Kissel H., Stella G., Besmer P. (1998). Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. EMBO J. 17, 6250–626210.1093/emboj/17.21.6250 PubMed DOI PMC
Toda A., Yokomizo T., Shimizu T. (2002). Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 68–69, 575–585.10.1016/S0090-6980(02)00056-4 PubMed DOI
Toda M., Dawson M., Nakamura T., Munro P. M., Richardson R. M., Bailly M., Ono S. J. (2004). Impact of engagement of FcεRI and CC chemokine receptor 1 on mast cell activation and motility. J. Biol. Chem. 279, 48443–4844810.1074/jbc.M408725200 PubMed DOI
Trub T., Frantz J. D., Miyazaki M., Band H., Shoelson S. E. (1997). The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–90210.1074/jbc.272.2.894 PubMed DOI
Tsai M., Takeishi T., Thompson H., Langley K. E., Zsebo K. M., Metcalfe D. D., Geissler E. N., Galli S. J. (1991). Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc. Natl. Acad. Sci. U.S.A. 88, 6382–638610.1073/pnas.88.14.6382 PubMed DOI PMC
Tůmová M., Koffer A., Šimíček M., Dráberova L., Dráber P. (2010). The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur. J. Immunol. 40, 3235–324510.1002/eji.201040403 PubMed DOI
Ueda S., Mizuki M., Ikeda H., Tsujimura T., Matsumura I., Nakano K., Daino H., Honda Z. Z., Sonoyama J., Shibayama H., Sugahara H., Machii T., Kanakura Y. (2002). Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor-induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood 99, 3342–334910.1182/blood-2001-11-0117 PubMed DOI
Urtz N., Olivera A., Bofill-Cardona E., Csonga R., Billich A., Mechtcheriakova D., Bornancin F., Woisetschläger M., Rivera J., Baumruker T. (2004). Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with Lyn kinase. Mol. Cell Biol. 24, 8765–877710.1128/MCB.24.19.8765-8777.2004 PubMed DOI PMC
Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B. S., Hořejší V., Malissen M., Dráber P. (2004). Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–101310.1084/jem.20041213 PubMed DOI PMC
Wang D., Dubois R. N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–19310.1038/nrc2809 PubMed DOI PMC
Wang X. S., Lau H. Y. (2006). Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61, 503–50610.1111/j.1398-9995.2006.01043.x PubMed DOI
Wang Y., Chen C. L., Iijima M. (2011). Signaling mechanisms for chemotaxis. Dev. Growth Differ. 53, 495–50210.1111/j.1440-169X.2010.01235.x PubMed DOI PMC
Weller C. L., Collington S. J., Brown J. K., Miller H. R., Al-Kashi A., Clark P., Jose P. J., Hartnell A., Williams T. J. (2005). Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med. 201, 1961–197110.1084/jem.20042407 PubMed DOI PMC
Weller C. L., Collington S. J., Hartnell A., Conroy D. M., Kaise T., Barker J. E., Wilson M. S., Taylor G. W., Jose P. J., Williams T. J. (2007). Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Natl. Acad. Sci. U.S.A. 104, 11712–1171710.1073/pnas.0701700104 PubMed DOI PMC
Wrzesinski S. H., Wan Y. Y., Flavell R. A. (2007). Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin. Cancer Res. 13, 5262–527010.1158/1078-0432.CCR-07-1157 PubMed DOI
Yamamoto Y., Otani S., Hirai H., Nagata K., Aritake K., Urade Y., Narumiya S., Yokozeki H., Nakamura M., Satoh T. (2011). Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. Am. J. Pathol. 179, 302–31410.1016/j.ajpath.2011.03.047 PubMed DOI PMC
Yamashita T., Mao S.-Y., Metzger H. (1994). Aggregation of the high-affinity IgE receptor and enhanced activity of p53/p56lyn protein-tyrosine kinase. Proc. Natl. Acad. Sci. U.S.A. 91, 11251–1125510.1073/pnas.91.23.11251 PubMed DOI PMC
Yokomizo T. (2011). Leukotriene B4 receptors: novel roles in immunological regulations. Adv. Enzyme Regul. 51, 59–6410.1016/j.advenzreg.2010.08.002 PubMed DOI
Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. (1997). A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–62410.1038/42506 PubMed DOI
Yokomizo T., Kato K., Terawaki K., Izumi T., Shimizu T. (2000). A second leukotriene B4 receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–43210.1084/jem.192.3.421 PubMed DOI PMC
Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. (1998). LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–9210.1016/S0092-8674(00)80918-6 PubMed DOI
Zhong H., Shlykov S. G., Molina J. G., Sanborn B. M., Jacobson M. A., Tilley S. L., Blackburn M. R. (2003). Activation of murine lung mast cells by the adenosine A3 receptor. J. Immunol. 171, 338–345 PubMed
Zhu M., Liu Y., Koonpaew S., Granillo O., Zhang W. (2004). Positive and negative regulation of FcεRI-mediated signaling by adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–100010.1084/jem.20031816 PubMed DOI PMC
Zlotnik A., Yoshie O. (2000). Chemokines: a new classification system and their role in immunity. Immunity 12, 121–12710.1016/S1074-7613(00)80165-X PubMed DOI
Zudaire E., Martínez A., Garayoa M., Pío R., Kaur G., Woolhiser M. R., Metcalfe D. D., Hook W. A., Siraganian R. P., Guise T. A., Chirgwin J. M., Cuttitta F. (2006). Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am. J. Pathol. 168, 280–29110.2353/ajpath.2006.050291 PubMed DOI PMC
Mast Cell Migration and Chemotaxis Assayed by Microscopy
Signal transduction and chemotaxis in mast cells