Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26693717
DOI
10.1007/s00436-015-4874-4
PII: 10.1007/s00436-015-4874-4
Knihovny.cz E-zdroje
- Klíčová slova
- Genetic diversity, Major histocompatibility complex, Metazoan parasites, Microsatellites, Parasite-driven balancing selection, Phylogeography,
- MeSH
- alely MeSH
- Cyprinidae genetika MeSH
- divoká zvířata MeSH
- genetická variace * MeSH
- hlavní histokompatibilní komplex genetika MeSH
- interakce hostitele a parazita MeSH
- mikrosatelitní repetice genetika MeSH
- nemoci ryb parazitologie MeSH
- parazitární nemoci u zvířat epidemiologie genetika parazitologie MeSH
- paraziti MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.
Zobrazit více v PubMed
Mol Ecol. 2008 Nov;17(22):4801-11 PubMed
Parasitol Res. 2005 Jan;95(1):65-72 PubMed
Heredity (Edinb). 2008 Jun;100(6):587-93 PubMed
BMC Evol Biol. 2009 Nov 23;9:269 PubMed
Immunol Res. 1990;9(2):115-22 PubMed
Infect Genet Evol. 2008 Jul;8(4):450-8 PubMed
Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1555-65 PubMed
Heredity (Edinb). 2007 Sep;99(3):265-77 PubMed
Parasit Vectors. 2011 Jun 27;4:120 PubMed
Genetica. 1998-1999;104(3):207-14 PubMed
Mol Ecol. 2009 Nov;18(22):4716-29 PubMed
Crit Rev Immunol. 1997;17(2):179-224 PubMed
Mol Ecol. 2005 Sep;14(10):3209-17 PubMed
J Evol Biol. 2014 May;27(5):960-74 PubMed
J Evol Biol. 2003 May;16(3):363-77 PubMed
Int J Parasitol. 2000 May;30(6):697-703 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Proc Biol Sci. 2010 Apr 7;277(1684):979-88 PubMed
Nature. 1975 Jul 3;256(5512):50-2 PubMed
Proc Biol Sci. 2001 Mar 7;268(1466):479-85 PubMed
Immunogenetics. 2011 Mar;63(3):167-81 PubMed
Parasitol Res. 2007 Aug;101(3):775-89 PubMed
Nat Commun. 2014 Oct 14;5:5172 PubMed
Mol Ecol. 2008 Jun;17(11):2652-65 PubMed
Immunol Today. 1986 Feb;7(2):41-4 PubMed
Annu Rev Genet. 1998;32:415-35 PubMed
PLoS One. 2012;7(2):e31820 PubMed
Mol Ecol. 2012 Feb;21(4):887-906 PubMed
J Evol Biol. 2014 Nov;27(11):2347-59 PubMed
Clin Exp Immunol. 2000 Sep;121(3):491-8 PubMed
Oecologia. 2001 Oct;129(2):271-280 PubMed
Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10896-9 PubMed
Genetica. 2001;111(1-3):237-57 PubMed
Evolution. 2007 Sep;61(9):2154-64 PubMed
Parasitology. 2008 Oct;135(12):1417-35 PubMed
Evol Bioinform Online. 2007 Feb 23;1:47-50 PubMed
Microbes Infect. 2004 Oct;6(12):1110-6 PubMed
J Mol Evol. 2005 Oct;61(4):531-41 PubMed
Vet Parasitol. 2011 Apr 19;177(1-2):145-51 PubMed
J Evol Biol. 2008 Jul;21(4):1144-50 PubMed
Nature. 1991 Aug 15;352(6336):595-600 PubMed
Mol Ecol. 2005 Jan;14(1):85-91 PubMed
Mol Ecol. 2001 Jun;10(6):1399-412 PubMed
Evolution. 2008 Jun;62(6):1458-68 PubMed
Parasitol Res. 2005 Apr;95(6):398-405 PubMed
Fish Shellfish Immunol. 2005 Mar;18(3):199-222 PubMed
Eur J Immunol. 2003 Dec;33(12):3353-8 PubMed
Mol Ecol. 2001 Oct;10(10):2525-39 PubMed
J Evol Biol. 2003 Mar;16(2):224-32 PubMed
J Evol Biol. 2008 Sep;21(5):1307-20 PubMed
Nature. 1966 Aug 27;211(5052):999-1000 PubMed
Proc Biol Sci. 2009 Mar 22;276(1659):1119-28 PubMed
PLoS One. 2012;7(12):e50971 PubMed
Nature. 2001 Nov 15;414(6861):300-2 PubMed
Association between louse abundance and MHC II supertypes in Galápagos mockingbirds