Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35835759
PubMed Central
PMC9283417
DOI
10.1038/s41467-022-31515-w
PII: 10.1038/s41467-022-31515-w
Knihovny.cz E-zdroje
- MeSH
- diploidie MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- genom MeSH
- haplotypy MeSH
- kapři * genetika MeSH
- molekulární evoluce MeSH
- polyploidie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.
Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan
Czech University of Life Sciences Prague Prague Czech Republic
Research Department for Limnology Mondsee University of Innsbruck A 5310 Mondsee Austria
University of Würzburg Developmental Biochemistry Biocenter D 97074 Würzburg Germany
Xiphophorus Genetic Stock Center Texas State University San Marcos TX 78666 USA
Zobrazit více v PubMed
DeVries H. The coefficient of mutation in Oenothera biennis L. Botanical Gaz. 1915;59:169–196.
Blakeslee AF. Types of mutations and their possible significance in evolution. Am. Naturalist. 1921;55:254–267.
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. PubMed
Muller HJ. Why polyploidy is rarer in animals than in plants. Am. Naturalist. 1925;59:346–353.
Orr HA. Why polyploidy is rarer in animals than in plants revisited. Am. Naturalist. 1990;136:759–770.
Mable BK. ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol. J. Linn. Soc. 2004;82:453–466.
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. T. R. Soc. B376, 10.1098/rstb.2020.0103 (2021). PubMed PMC
Stöck M, Lamatsch DK. Why comparing polyploidy research in animals and plants. Cytogenet. Genome Res. 2013;140:75–78. PubMed
Lamatsch, D. K. & Stöck, M. In Lost Sex. Lost Sex: The Evolutionary Biology of Parthenogenesis 399–432 (Springer, 2009).
Zhou L, Gui J. Natural and artificial polyploids in aquaculture. Aquac. Fish. 2017;2:103–111.
Kalous L, Bohlen J, Rylková K, Petrtýl M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae) Ichthyol. Explor. Freshw. 2012;23:11–18.
Chen D, et al. The evolutionary origin and domestication history of goldfish (Carassius auratus) Proc. Natl. Acad. Sci. USA. 2020;117:29775–29785. PubMed PMC
Kon T, et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 2020;30:2260–2274.e2266. PubMed
Xu P, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 2014;46:1212–1219. PubMed
Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtýl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013;380-383:13–20.
van der Veer G, Nentwig W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish. 2015;24:646–656.
Penáz, M., Rab, P. & Prokes, M. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio (Academia, 1979).
Mishina T, et al. Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. Sci. Rep. 2021;11:1–12. PubMed PMC
Ding M, et al. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet. 2021;17:e1009760. PubMed PMC
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet. Genome Res. 2013;139:276–283. PubMed
Yang L, Yang S-T, Wei X-H, Gui J-F. Genetic diversity among different clones of the Gynogenetic Silver Crucian Carp, Carassius auratus gibelio, revealed by Transferrin and Isozyme Markers. Biochem. Genet. 2001;39:213225. PubMed
Luo J, et al. From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci. Adv. 2020;6:eaaz7677. PubMed PMC
Session AM, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538:336–343. PubMed PMC
Du K, et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020;4:841–852. PubMed PMC
Wen M, et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758) BMC Genomics. 2020;21:552. PubMed PMC
David L, Blum S, Feldman MW, Lavi U, Hillel J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol. Biol. Evol. 2003;20:1425–1434. PubMed
Li X-Y, et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol. Phylogenet. Evol. 2014;78:96–104. PubMed
Mendiburu AO, Peloquin S. Sexual polyploidization and depolyploidization: some terminology and definitions. Theor. Appl. Genet. 1976;48:137143. PubMed
Xu P, et al. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 2019;10:4625. PubMed PMC
Li J-T, et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 2021;53:1493–1503. PubMed PMC
Bohutínská, M. et al. Genomic novelty versus convergence in the basis of adaptation to whole genome duplication. bioRxiv, 10.1101/2020.01.31.929109 (2020).
Chen Z, et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 2019;5:eaav0547. PubMed PMC
Walkowiak S, et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. PubMed PMC
Scott MF, et al. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 2021;22:137. PubMed PMC
Hu Y, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019;51:739–748. PubMed
Zhang J, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018;50:1565–1573. PubMed
Krasileva KV, et al. Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol. 2013;14:R66. PubMed PMC
Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res.28, 10.1093/dnares/dsab008 (2021). PubMed PMC
Rhie A, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–746. PubMed PMC
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. PubMed
Martin AP, Palumbi SR. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA. 1993;90:4087–4091. PubMed PMC
Fasano C, et al. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol. 2016;210:1382–1394. PubMed
Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 2003;358:1149–1155. PubMed PMC
Cheng F, et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants. 2018;4:258–268. PubMed
Alger EI, Edger PP. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 2020;54:108–113. PubMed
De Smet R, et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA. 2013;110:2898–2903. PubMed PMC
Pikaard CS. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 1999;4:478–483. PubMed
Lynch M, Conery J, Bürger R. Mutational meltdowns in sexual populations. Evolution. 1995;49:1067–1080. PubMed
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316:1862–1866. PubMed PMC
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 2020;23:68–78. PubMed
Ficetola GF, Stöck M. Do hybrid‐origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 2016;43:703–715.
Zhang J, et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 2015;5:10898. PubMed PMC
Lamatsch DK, Steinlein C, Schmid M, Schartl M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry. 2000;39:91–95. PubMed
Alemán, J. L. F. & Oufaska, Y. In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education 68–72 (Association for Computing Machinery, Bilkent, 2010).
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30:923–930. PubMed
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd edn), Measurement: Interdisciplinary Research and Perspectives, 17, 160–167 (Routledge, 2019).
Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R Package Version, 2 (Science Open, 2009).
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 2021;18:170–175. PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Durand NC, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–98. PubMed PMC
Dudchenko O, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. PubMed PMC
Robinson JT, et al. Juicebox. js provides a cloud-based visualization system for Hi-C data. Cell Syst. 2018;6:256–258.e251. PubMed PMC
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32:2103–2110. PubMed PMC
Kuhl H, et al. CSA: a high-throughput chromosome-scale assembly pipeline for vertebrate genomes. GigaScience. 2020;9:giaa034. PubMed PMC
Sun L, et al. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, Bionano and Hi-C technology. Mol. Ecol. Resour. 2020;20:1361–1371. PubMed
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–493. PubMed PMC
Frith MC, Kawaguchi R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 2015;16:106. PubMed PMC
Blanchette M, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004;14:708–715. PubMed PMC
Minh BQ, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. PubMed PMC
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl Acad. Sci. USA. 2003;100:1148411489. PubMed PMC
Sharma V, Hiller M. Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation. Nucleic Acids Res. 2017;45:8369–8377. PubMed PMC
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0. 1996-2010 http://www.repeatmasker.org (2015).
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. 2008-2015 http://www.repeatmasker.org (2008).
Iwata H, Gotoh O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012;40:e161–e161. PubMed PMC
Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14:988–995. PubMed PMC
She R, Chu JS-C, Wang K, Pei J, Chen N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19:143–149. PubMed PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. PubMed PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC
Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. PubMed PMC
Stanke M, et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:W435–W439. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:1–9. PubMed PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. PubMed
Chan, P. P. & Lowe, T. M. In Gene Prediction, Methods and Protocols. Methods in Molecular Biology 1962 1–14 (Springer, 2019). PubMed
Lagesen K, et al. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 2007;35:3100–3108. PubMed PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. PubMed PMC
Kalvari I, et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018;46:D335–D342. PubMed PMC
Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Brief. Bioinforma. 2013;14:144–161. PubMed PMC
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656664. PubMed PMC
Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 2010;26:1899–1900. PubMed PMC
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. PubMed PMC
Yang, Z. User guide PAML: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol.3, 10.1093/molbev/msm088 (2009). PubMed
Wang Y, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 2015;47:625–631. PubMed