Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds

. 2018 ; 9 () : 605. [epub] 20180417

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29719531

Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.

Zobrazit více v PubMed

Ware CF. The TNF superfamily. Cytokine Growth Factor Rev (2003) 14(3–4):181–4.10.1016/S1359-6101(03)00032-7 PubMed DOI

Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology (2005) 115(1):1–20.10.1111/j.1365-2567.2005.02143.x PubMed DOI PMC

Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov (2013) 12(2):147–68.10.1038/nrd3930 PubMed DOI PMC

Beutler B, Cerami A. The biology of cachectin/TNF – a primary mediator of the host response. Annu Rev Immunol (1989) 7:625–55.10.1146/annurev.iy.07.040189.003205 PubMed DOI

Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell (2001) 104(4):487–501.10.1016/S0092-8674(01)00237-9 PubMed DOI

Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech (2000) 50(3):184–95.10.1002/1097-0029(20000801)50:3<184:AID-JEMT2>3.0.CO;2-H PubMed DOI

Li J, Yin Q, Wu H. Structural basis of signal transduction in the TNF receptor superfamily. Adv Immunol (2013) 119:135–53.10.1016/B978-0-12-407707-2.00005-9 PubMed DOI PMC

Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell (1994) 76(6):959–62.10.1016/0092-8674(94)90372-7 PubMed DOI

Qu Y, Zhao G, Li H. Forward and reverse signaling mediated by transmembrane tumor necrosis factor-alpha and TNF receptor 2: potential roles in an immunosuppressive tumor microenvironment. Front Immunol (2017) 8:1675.10.3389/fimmu.2017.01675 PubMed DOI PMC

International Chicken Genome SC. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature (2004) 432(7018):695–716.10.1038/nature03154 PubMed DOI

Kaiser P. The long view: a bright past, a brighter future? Forty years of chicken immunology pre- and post-genome. Avian Pathol (2012) 41(6):511–8.10.1080/03079457.2012.735359 PubMed DOI

Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, et al. A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res (2005) 25(8):467–84.10.1089/jir.2005.25.467 PubMed DOI

Schultz U, Magor K. Comparative immunology of agricultural birds. In: Schat K, Kaspers B, Kaiser P, editors. Avian Immunology. 2nd ed San Diego: Academic Press; (2014). p. 363–89.

Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature (1999) 401(6756):923–5.10.1038/44856 PubMed DOI

Arnold JW, Holt PS. Cytotoxicity in chicken alimentary secretions as measured by a derivative of the tumor necrosis factor assay. Poult Sci (1996) 75(3):329–34.10.3382/ps.0750329 PubMed DOI

Byrnes S, Eaton R, Kogut M. In vitro interleukin-1 and tumor necrosis factor-alpha production by macrophages from chickens infected with either Eimeria maxima or Eimeria tenella. Int J Parasitol (1993) 23(5):639–45.10.1016/0020-7519(93)90170-4 PubMed DOI

Rautenschlein S, Subramanian A, Sharma JM. Bioactivities of a tumour necrosis-like factor released by chicken macrophages. Dev Comp Immunol (1999) 23(7–8):629–40.10.1016/S0145-305X(99)00043-9 PubMed DOI

Zhang S, Lillehoj HS, Ruff MD. In vivo role of tumor necrosis-like factor in Eimeria tenella infection. Avian Dis (1995) 39(4):859–66.10.2307/1592424 PubMed DOI

Takimoto T, Sato K, Akiba Y, Takahashi K. Role of chicken TL1A on inflammatory responses and partial characterization of its receptor. J Immunol (2008) 180(12):8327–32.10.4049/jimmunol.180.12.8327 PubMed DOI

Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, et al. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol (2014) 15(12):565.10.1186/s13059-014-0565-1 PubMed DOI PMC

Hirono I, Nam BH, Kurobe T, Aoki T. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese flounder Paralychthys olivaceus. J Immunol (2000) 165(8):4423–7.10.4049/jimmunol.165.8.4423 PubMed DOI

Laing KJ, Wang T, Zou J, Holland J, Hong S, Bols N, et al. Cloning and expression analysis of rainbow trout Oncorhynchus mykiss tumour necrosis factor-alpha. Eur J Biochem (2001) 268(5):1315–22.10.1046/j.1432-1327.2001.01996.x PubMed DOI

Saeij JP, Stet RJ, de Vries BJ, van Muiswinkel WB, Wiegertjes GF. Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev Comp Immunol (2003) 27(1):29–41.10.1016/S0145-305X(02)00064-2 PubMed DOI

Zou J, Peddie S, Scapigliati G, Zhang Y, Bols NC, Ellis AE, et al. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol (2003) 27(9):813–22.10.1016/S0145-305X(03)00077-6 PubMed DOI

Hong S, Li R, Xu Q, Secombes CJ, Wang T. Two types of TNF-alpha exist in teleost fish: phylogeny, expression, and bioactivity analysis of type-II TNF-alpha3 in rainbow trout Oncorhynchus mykiss. J Immunol (2013) 191(12):5959–72.10.4049/jimmunol.1301584 PubMed DOI

Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol (2016) 12(1):49–62.10.1038/nrrheum.2015.169 PubMed DOI PMC

Bridgham JT, Johnson AL. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol Reprod (2001) 65(3):733–9.10.1095/biolreprod65.3.733 PubMed DOI

Bridgham JT, Johnson AL. Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerin. Biochem Biophys Res Commun (2003) 307(4):956–61.10.1016/S0006-291X(03)01304-4 PubMed DOI

Abdalla SA, Horiuchi H, Furusawa S, Matsuda H. Molecular study on chicken tumor necrosis factor receptor-II and tumor necrosis factor receptor-associated factor-5. Vet Immunol Immunopathol (2004) 98(1–2):31–41.10.1016/j.vetimm.2003.10.004 PubMed DOI

Hron T, Pajer P, Paces J, Bartunek P, Elleder D. Hidden genes in birds. Genome Biol (2015) 16:164.10.1186/s13059-015-0724-z PubMed DOI PMC

Farkasova H, Hron T, Paces J, Pajer P, Elleder D. Identification of a GC-rich leptin gene in chicken. Agri Gene (2016) 1:88–92.10.1016/j.aggene.2016.04.001 DOI

Seroussi E, Cinnamon Y, Yosefi S, Genin O, Smith JG, Rafati N, et al. Identification of the long-sought leptin in chicken and duck: expression pattern of the highly GC-rich avian leptin fits an autocrine/paracrine rather than endocrine function. Endocrinology (2016) 157(2):737–51.10.1210/en.2015-1634 PubMed DOI

Bornelov S, Seroussi E, Yosefi S, Pendavis K, Burgess SC, Grabherr M, et al. Correspondence on Lovell et al.: identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol (2017) 18(1):112.10.1186/s13059-017-1231-1 PubMed DOI PMC

Mahul-Mellier AL, Strappazzon F, Petiot A, Chatellard-Causse C, Torch S, Blot B, et al. Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol Chem (2008) 283(50):34954–65.10.1074/jbc.M803140200 PubMed DOI PMC

Weissensteiner MH, Pang AWC, Bunikis I, Hoijer I, Vinnere-Petterson O, Suh A, et al. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res (2017) 27(5):697–708.10.1101/gr.215095.116 PubMed DOI PMC

Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, et al. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol (2010) 87(5):753–64.10.1189/jlb.0909624 PubMed DOI

Gobel TW, Schneider K, Schaerer B, Mejri I, Puehler F, Weigend S, et al. IL-18 stimulates the proliferation and IFN-gamma release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species. J Immunol (2003) 171(4):1809–15.10.4049/jimmunol.171.4.1809 PubMed DOI

Weining KC, Sick C, Kaspers B, Staeheli P. A chicken homolog of mammalian interleukin-1 beta: cDNA cloning and purification of active recombinant protein. Eur J Biochem (1998) 258(3):994–1000.10.1046/j.1432-1327.1998.2580994.x PubMed DOI

Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem (1988) 57:505–18.10.1146/annurev.bi.57.070188.002445 PubMed DOI

Di Girolamo N, Visvanathan K, Lloyd A, Wakefield D. Expression of TNF-alpha by human plasma cells in chronic inflammation. J Leukoc Biol (1997) 61(6):667–78.10.1002/jlb.61.6.667 PubMed DOI

Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum (1993) 36(12):1681–90.10.1002/art.1780361206 PubMed DOI

Feldmann M, Maini RN. Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med (2003) 9(10):1245–50.10.1038/nm939 PubMed DOI

Savan R, Kono T, Igawa D, Sakai M. A novel tumor necrosis factor (TNF) gene present in tandem with theTNF-alpha gene on the same chromosome in teleosts. Immunogenetics (2005) 57(1–2):140–50.10.1007/s00251-005-0768-4 PubMed DOI

Soller JT, Murua-Escobar H, Willenbrock S, Janssen M, Eberle N, Bullerdiek J, et al. Comparison of the human and canine cytokines IL-1(alpha/beta) and TNF-alpha to orthologous other mammalians. J Hered (2007) 98(5):485–90.10.1093/jhered/esm025 PubMed DOI

Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature (1997) 385(6618):729–33.10.1038/385729a0 PubMed DOI

Gyorfy Z, Ohnemus A, Kaspers B, Duda E, Staeheli P. Truncated chicken interleukin-1beta with increased biologic activity. J Interferon Cytokine Res (2003) 23(5):223–8.10.1089/107999003321829935 PubMed DOI

The MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature (1999) 401:921–3.10.1038/44853 PubMed DOI

Gifford GE, Flick DA. Natural production and release of tumour necrosis factor. In: Bock G, Marsh J, editors. Ciba Foundation Symposium 131 – Tumour Necrosis Factor and Related Cytotoxins. Amsterdam: John Wiley & Sons, Ltd; (2007). p. 3–20. PubMed

Andersson U, Sander B, Andersson J, Moller G. Concomitant production of different lymphokines in activated T cells. Eur J Immunol (1988) 18(12):2081–4.10.1002/eji.1830181232 PubMed DOI

Pawelec G, Schaudt K, Rehbein A, Busch FW. Differential secretion of tumor necrosis factor-alpha and granulocyte/macrophage colony-stimulating factors but not interferon-gamma from CD4+ compared to CD8+ human T cell clones. Eur J Immunol (1989) 19(1):197–200.10.1002/eji.1830190132 PubMed DOI

Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol (2009) 27:147–63.10.1146/annurev.immunol.021908.132629 PubMed DOI

Zhang S, Lillehoj HS, Ruff MD. Chicken tumor necrosis-like factor. I. In vitro production by macrophages stimulated with Eimeria tenella or bacterial lipopolysaccharide. Poult Sci (1995) 74(8):1304–10.10.3382/ps.0741304 PubMed DOI

Schneider K, Klaas R, Kaspers B, Staeheli P. Chicken interleukin-6. cDNA structure and biological properties. Eur J Biochem (2001) 268(15):4200–6.10.1046/j.1432-1327.2001.02334.x PubMed DOI

Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, et al. Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. Proc Natl Acad Sci U S A (1991) 88(3):966–70.10.1073/pnas.88.3.966 PubMed DOI PMC

Rubbenstroth D, Rinder M, Kaspers B, Staeheli P. Efficient isolation of avian bornaviruses (ABV) from naturally infected psittacine birds and identification of a new ABV genotype from a salmon-crested cockatoo (Cacatua moluccensis). Vet Microbiol (2012) 161(1–2):36–42.10.1016/j.vetmic.2012.07.004 PubMed DOI

Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunopathol (2005) 104(1–2):117–27.10.1016/j.vetimm.2004.11.003 PubMed DOI

Burggraaf S, Karpala AJ, Bingham J, Lowther S, Selleck P, Kimpton W, et al. H5N1 infection causes rapid mortality and high cytokine levels in chickens compared to ducks. Virus Res (2014) 185:23–31.10.1016/j.virusres.2014.03.012 PubMed DOI PMC

Dalgaard TS, Skovgaard K, Norup LR, Pleidrup J, Permin A, Schou TW, et al. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli. Vet Immunol Immunopathol (2015) 164(1–2):79–86.10.1016/j.vetimm.2015.01.003 PubMed DOI

Mauviel A, Temime N, Charron D, Loyau G, Pujol JP. Induction of interleukin-1 beta production in human dermal fibroblasts by interleukin-1 alpha and tumor necrosis factor-alpha. Involvement of protein kinase-dependent and adenylate cyclase-dependent regulatory pathways. J Cell Biochem (1991) 47(2):174–83.10.1002/jcb.240470211 PubMed DOI

Zhang YH, Lin JX, Vilcek J. Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol (1990) 10(7):3818–23.10.1128/MCB.10.7.3818 PubMed DOI PMC

Bethea JR, Chung IY, Sparacio SM, Gillespie GY, Benveniste EN. Interleukin-1 beta induction of tumor necrosis factor-alpha gene expression in human astroglioma cells. J Neuroimmunol (1992) 36(2–3):179–91.10.1016/0165-5728(92)90049-Q PubMed DOI

Kothlow S, Schenk-Weibhauser K, Ratcliffe MJ, Kaspers B. Prolonged effect of BAFF on chicken B cell development revealed by RCAS retroviral gene transfer in vivo. Mol Immunol (2010) 47(7–8):1619–28.10.1016/j.molimm.2010.01.011 PubMed DOI

Penski N, Hartle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, et al. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol (2011) 85(15):7730–41.10.1128/JVI.00063-11 PubMed DOI PMC

Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, et al. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol (2011) 85(16):8307–15.10.1128/JVI.00535-11 PubMed DOI PMC

Rahman MM, McFadden G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog (2006) 2(2):e4.10.1371/journal.ppat.0020004 PubMed DOI PMC

Laidlaw SM, Robey R, Davies M, Giotis ES, Ross C, Buttigieg K, et al. Genetic screen of a mutant poxvirus library identifies an ankyrin repeat protein involved in blocking induction of avian type I interferon. J Virol (2013) 87(9):5041–52.10.1128/JVI.02736-12 PubMed DOI PMC

Puehler F, Schwarz H, Waidner B, Kalinowski J, Kaspers B, Bereswill S, et al. An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus. J Biol Chem (2003) 278(9):6905–11.10.1074/jbc.M207336200 PubMed DOI

Peck R, Murthy KK, Vainio O. Expression of B-L (Ia-like) antigens on macrophages from chicken lymphoid organs. J Immunol (1982) 129(1):4–5. PubMed

Luhtala M, Koskinen R, Toivanen P, Vainio O. Characterization of chicken CD8-specific monoclonal antibodies recognizing novel epitopes. Scand J Immunol (1995) 42(1):171–4.10.1111/j.1365-3083.1995.tb03641.x PubMed DOI

Roge R, Thorsen J, Torring C, Ozbay A, Moller BK, Carstens J. Commonly used reference genes are actively regulated in in vitro stimulated lymphocytes. Scand J Immunol (2007) 65(2):202–9.10.1111/j.1365-3083.2006.01879.x PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res (2012) 40(15):e115.10.1093/nar/gks596 PubMed DOI PMC

Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res (2008) 7(2):731–40.10.1021/pr700658q PubMed DOI

Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics (2011) 11(10):2019–26.10.1002/pmic.201000722 PubMed DOI PMC

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics (2014) 13(9):2513–26.10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods (2016) 13(9):731–40.10.1038/nmeth.3901 PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol (2013) 30(4):772–80.10.1093/molbev/mst010 PubMed DOI PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol (2013) 30(12):2725–9.10.1093/molbev/mst197 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace