Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29719531
PubMed Central
PMC5913325
DOI
10.3389/fimmu.2018.00605
Knihovny.cz E-zdroje
- Klíčová slova
- avian, biological activity, chicken, missing gene, tumor necrosis factor-α, tumor necrosis factor-α receptors,
- MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- GC bohatá sekvence genetika MeSH
- klonování DNA MeSH
- kultivované buňky MeSH
- kur domácí imunologie MeSH
- lidé MeSH
- makrofágy imunologie MeSH
- NF-kappa B metabolismus MeSH
- Palaeognathae imunologie MeSH
- ptačí proteiny genetika metabolismus MeSH
- receptory TNF genetika metabolismus MeSH
- savci imunologie MeSH
- sekvenční seřazení MeSH
- TNF-alfa genetika MeSH
- vrány imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NF-kappa B MeSH
- ptačí proteiny MeSH
- receptory TNF MeSH
- TNF-alfa MeSH
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.
Department of Veterinary Science Ludwig Maximilians Universität Munich Germany
Reproductive Biotechnology Department of Animal Sciences Technical University Munich Munich Germany
Zobrazit více v PubMed
Ware CF. The TNF superfamily. Cytokine Growth Factor Rev (2003) 14(3–4):181–4.10.1016/S1359-6101(03)00032-7 PubMed DOI
Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology (2005) 115(1):1–20.10.1111/j.1365-2567.2005.02143.x PubMed DOI PMC
Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov (2013) 12(2):147–68.10.1038/nrd3930 PubMed DOI PMC
Beutler B, Cerami A. The biology of cachectin/TNF – a primary mediator of the host response. Annu Rev Immunol (1989) 7:625–55.10.1146/annurev.iy.07.040189.003205 PubMed DOI
Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell (2001) 104(4):487–501.10.1016/S0092-8674(01)00237-9 PubMed DOI
Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech (2000) 50(3):184–95.10.1002/1097-0029(20000801)50:3<184:AID-JEMT2>3.0.CO;2-H PubMed DOI
Li J, Yin Q, Wu H. Structural basis of signal transduction in the TNF receptor superfamily. Adv Immunol (2013) 119:135–53.10.1016/B978-0-12-407707-2.00005-9 PubMed DOI PMC
Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell (1994) 76(6):959–62.10.1016/0092-8674(94)90372-7 PubMed DOI
Qu Y, Zhao G, Li H. Forward and reverse signaling mediated by transmembrane tumor necrosis factor-alpha and TNF receptor 2: potential roles in an immunosuppressive tumor microenvironment. Front Immunol (2017) 8:1675.10.3389/fimmu.2017.01675 PubMed DOI PMC
International Chicken Genome SC. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature (2004) 432(7018):695–716.10.1038/nature03154 PubMed DOI
Kaiser P. The long view: a bright past, a brighter future? Forty years of chicken immunology pre- and post-genome. Avian Pathol (2012) 41(6):511–8.10.1080/03079457.2012.735359 PubMed DOI
Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, et al. A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res (2005) 25(8):467–84.10.1089/jir.2005.25.467 PubMed DOI
Schultz U, Magor K. Comparative immunology of agricultural birds. In: Schat K, Kaspers B, Kaiser P, editors. Avian Immunology. 2nd ed San Diego: Academic Press; (2014). p. 363–89.
Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature (1999) 401(6756):923–5.10.1038/44856 PubMed DOI
Arnold JW, Holt PS. Cytotoxicity in chicken alimentary secretions as measured by a derivative of the tumor necrosis factor assay. Poult Sci (1996) 75(3):329–34.10.3382/ps.0750329 PubMed DOI
Byrnes S, Eaton R, Kogut M. In vitro interleukin-1 and tumor necrosis factor-alpha production by macrophages from chickens infected with either Eimeria maxima or Eimeria tenella. Int J Parasitol (1993) 23(5):639–45.10.1016/0020-7519(93)90170-4 PubMed DOI
Rautenschlein S, Subramanian A, Sharma JM. Bioactivities of a tumour necrosis-like factor released by chicken macrophages. Dev Comp Immunol (1999) 23(7–8):629–40.10.1016/S0145-305X(99)00043-9 PubMed DOI
Zhang S, Lillehoj HS, Ruff MD. In vivo role of tumor necrosis-like factor in Eimeria tenella infection. Avian Dis (1995) 39(4):859–66.10.2307/1592424 PubMed DOI
Takimoto T, Sato K, Akiba Y, Takahashi K. Role of chicken TL1A on inflammatory responses and partial characterization of its receptor. J Immunol (2008) 180(12):8327–32.10.4049/jimmunol.180.12.8327 PubMed DOI
Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, et al. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol (2014) 15(12):565.10.1186/s13059-014-0565-1 PubMed DOI PMC
Hirono I, Nam BH, Kurobe T, Aoki T. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese flounder Paralychthys olivaceus. J Immunol (2000) 165(8):4423–7.10.4049/jimmunol.165.8.4423 PubMed DOI
Laing KJ, Wang T, Zou J, Holland J, Hong S, Bols N, et al. Cloning and expression analysis of rainbow trout Oncorhynchus mykiss tumour necrosis factor-alpha. Eur J Biochem (2001) 268(5):1315–22.10.1046/j.1432-1327.2001.01996.x PubMed DOI
Saeij JP, Stet RJ, de Vries BJ, van Muiswinkel WB, Wiegertjes GF. Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev Comp Immunol (2003) 27(1):29–41.10.1016/S0145-305X(02)00064-2 PubMed DOI
Zou J, Peddie S, Scapigliati G, Zhang Y, Bols NC, Ellis AE, et al. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol (2003) 27(9):813–22.10.1016/S0145-305X(03)00077-6 PubMed DOI
Hong S, Li R, Xu Q, Secombes CJ, Wang T. Two types of TNF-alpha exist in teleost fish: phylogeny, expression, and bioactivity analysis of type-II TNF-alpha3 in rainbow trout Oncorhynchus mykiss. J Immunol (2013) 191(12):5959–72.10.4049/jimmunol.1301584 PubMed DOI
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol (2016) 12(1):49–62.10.1038/nrrheum.2015.169 PubMed DOI PMC
Bridgham JT, Johnson AL. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol Reprod (2001) 65(3):733–9.10.1095/biolreprod65.3.733 PubMed DOI
Bridgham JT, Johnson AL. Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerin. Biochem Biophys Res Commun (2003) 307(4):956–61.10.1016/S0006-291X(03)01304-4 PubMed DOI
Abdalla SA, Horiuchi H, Furusawa S, Matsuda H. Molecular study on chicken tumor necrosis factor receptor-II and tumor necrosis factor receptor-associated factor-5. Vet Immunol Immunopathol (2004) 98(1–2):31–41.10.1016/j.vetimm.2003.10.004 PubMed DOI
Hron T, Pajer P, Paces J, Bartunek P, Elleder D. Hidden genes in birds. Genome Biol (2015) 16:164.10.1186/s13059-015-0724-z PubMed DOI PMC
Farkasova H, Hron T, Paces J, Pajer P, Elleder D. Identification of a GC-rich leptin gene in chicken. Agri Gene (2016) 1:88–92.10.1016/j.aggene.2016.04.001 DOI
Seroussi E, Cinnamon Y, Yosefi S, Genin O, Smith JG, Rafati N, et al. Identification of the long-sought leptin in chicken and duck: expression pattern of the highly GC-rich avian leptin fits an autocrine/paracrine rather than endocrine function. Endocrinology (2016) 157(2):737–51.10.1210/en.2015-1634 PubMed DOI
Bornelov S, Seroussi E, Yosefi S, Pendavis K, Burgess SC, Grabherr M, et al. Correspondence on Lovell et al.: identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol (2017) 18(1):112.10.1186/s13059-017-1231-1 PubMed DOI PMC
Mahul-Mellier AL, Strappazzon F, Petiot A, Chatellard-Causse C, Torch S, Blot B, et al. Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol Chem (2008) 283(50):34954–65.10.1074/jbc.M803140200 PubMed DOI PMC
Weissensteiner MH, Pang AWC, Bunikis I, Hoijer I, Vinnere-Petterson O, Suh A, et al. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res (2017) 27(5):697–708.10.1101/gr.215095.116 PubMed DOI PMC
Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, et al. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol (2010) 87(5):753–64.10.1189/jlb.0909624 PubMed DOI
Gobel TW, Schneider K, Schaerer B, Mejri I, Puehler F, Weigend S, et al. IL-18 stimulates the proliferation and IFN-gamma release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species. J Immunol (2003) 171(4):1809–15.10.4049/jimmunol.171.4.1809 PubMed DOI
Weining KC, Sick C, Kaspers B, Staeheli P. A chicken homolog of mammalian interleukin-1 beta: cDNA cloning and purification of active recombinant protein. Eur J Biochem (1998) 258(3):994–1000.10.1046/j.1432-1327.1998.2580994.x PubMed DOI
Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem (1988) 57:505–18.10.1146/annurev.bi.57.070188.002445 PubMed DOI
Di Girolamo N, Visvanathan K, Lloyd A, Wakefield D. Expression of TNF-alpha by human plasma cells in chronic inflammation. J Leukoc Biol (1997) 61(6):667–78.10.1002/jlb.61.6.667 PubMed DOI
Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum (1993) 36(12):1681–90.10.1002/art.1780361206 PubMed DOI
Feldmann M, Maini RN. Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med (2003) 9(10):1245–50.10.1038/nm939 PubMed DOI
Savan R, Kono T, Igawa D, Sakai M. A novel tumor necrosis factor (TNF) gene present in tandem with theTNF-alpha gene on the same chromosome in teleosts. Immunogenetics (2005) 57(1–2):140–50.10.1007/s00251-005-0768-4 PubMed DOI
Soller JT, Murua-Escobar H, Willenbrock S, Janssen M, Eberle N, Bullerdiek J, et al. Comparison of the human and canine cytokines IL-1(alpha/beta) and TNF-alpha to orthologous other mammalians. J Hered (2007) 98(5):485–90.10.1093/jhered/esm025 PubMed DOI
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature (1997) 385(6618):729–33.10.1038/385729a0 PubMed DOI
Gyorfy Z, Ohnemus A, Kaspers B, Duda E, Staeheli P. Truncated chicken interleukin-1beta with increased biologic activity. J Interferon Cytokine Res (2003) 23(5):223–8.10.1089/107999003321829935 PubMed DOI
The MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature (1999) 401:921–3.10.1038/44853 PubMed DOI
Gifford GE, Flick DA. Natural production and release of tumour necrosis factor. In: Bock G, Marsh J, editors. Ciba Foundation Symposium 131 – Tumour Necrosis Factor and Related Cytotoxins. Amsterdam: John Wiley & Sons, Ltd; (2007). p. 3–20. PubMed
Andersson U, Sander B, Andersson J, Moller G. Concomitant production of different lymphokines in activated T cells. Eur J Immunol (1988) 18(12):2081–4.10.1002/eji.1830181232 PubMed DOI
Pawelec G, Schaudt K, Rehbein A, Busch FW. Differential secretion of tumor necrosis factor-alpha and granulocyte/macrophage colony-stimulating factors but not interferon-gamma from CD4+ compared to CD8+ human T cell clones. Eur J Immunol (1989) 19(1):197–200.10.1002/eji.1830190132 PubMed DOI
Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol (2009) 27:147–63.10.1146/annurev.immunol.021908.132629 PubMed DOI
Zhang S, Lillehoj HS, Ruff MD. Chicken tumor necrosis-like factor. I. In vitro production by macrophages stimulated with Eimeria tenella or bacterial lipopolysaccharide. Poult Sci (1995) 74(8):1304–10.10.3382/ps.0741304 PubMed DOI
Schneider K, Klaas R, Kaspers B, Staeheli P. Chicken interleukin-6. cDNA structure and biological properties. Eur J Biochem (2001) 268(15):4200–6.10.1046/j.1432-1327.2001.02334.x PubMed DOI
Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, et al. Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. Proc Natl Acad Sci U S A (1991) 88(3):966–70.10.1073/pnas.88.3.966 PubMed DOI PMC
Rubbenstroth D, Rinder M, Kaspers B, Staeheli P. Efficient isolation of avian bornaviruses (ABV) from naturally infected psittacine birds and identification of a new ABV genotype from a salmon-crested cockatoo (Cacatua moluccensis). Vet Microbiol (2012) 161(1–2):36–42.10.1016/j.vetmic.2012.07.004 PubMed DOI
Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunopathol (2005) 104(1–2):117–27.10.1016/j.vetimm.2004.11.003 PubMed DOI
Burggraaf S, Karpala AJ, Bingham J, Lowther S, Selleck P, Kimpton W, et al. H5N1 infection causes rapid mortality and high cytokine levels in chickens compared to ducks. Virus Res (2014) 185:23–31.10.1016/j.virusres.2014.03.012 PubMed DOI PMC
Dalgaard TS, Skovgaard K, Norup LR, Pleidrup J, Permin A, Schou TW, et al. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli. Vet Immunol Immunopathol (2015) 164(1–2):79–86.10.1016/j.vetimm.2015.01.003 PubMed DOI
Mauviel A, Temime N, Charron D, Loyau G, Pujol JP. Induction of interleukin-1 beta production in human dermal fibroblasts by interleukin-1 alpha and tumor necrosis factor-alpha. Involvement of protein kinase-dependent and adenylate cyclase-dependent regulatory pathways. J Cell Biochem (1991) 47(2):174–83.10.1002/jcb.240470211 PubMed DOI
Zhang YH, Lin JX, Vilcek J. Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol (1990) 10(7):3818–23.10.1128/MCB.10.7.3818 PubMed DOI PMC
Bethea JR, Chung IY, Sparacio SM, Gillespie GY, Benveniste EN. Interleukin-1 beta induction of tumor necrosis factor-alpha gene expression in human astroglioma cells. J Neuroimmunol (1992) 36(2–3):179–91.10.1016/0165-5728(92)90049-Q PubMed DOI
Kothlow S, Schenk-Weibhauser K, Ratcliffe MJ, Kaspers B. Prolonged effect of BAFF on chicken B cell development revealed by RCAS retroviral gene transfer in vivo. Mol Immunol (2010) 47(7–8):1619–28.10.1016/j.molimm.2010.01.011 PubMed DOI
Penski N, Hartle S, Rubbenstroth D, Krohmann C, Ruggli N, Schusser B, et al. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state. J Virol (2011) 85(15):7730–41.10.1128/JVI.00063-11 PubMed DOI PMC
Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, et al. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol (2011) 85(16):8307–15.10.1128/JVI.00535-11 PubMed DOI PMC
Rahman MM, McFadden G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog (2006) 2(2):e4.10.1371/journal.ppat.0020004 PubMed DOI PMC
Laidlaw SM, Robey R, Davies M, Giotis ES, Ross C, Buttigieg K, et al. Genetic screen of a mutant poxvirus library identifies an ankyrin repeat protein involved in blocking induction of avian type I interferon. J Virol (2013) 87(9):5041–52.10.1128/JVI.02736-12 PubMed DOI PMC
Puehler F, Schwarz H, Waidner B, Kalinowski J, Kaspers B, Bereswill S, et al. An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus. J Biol Chem (2003) 278(9):6905–11.10.1074/jbc.M207336200 PubMed DOI
Peck R, Murthy KK, Vainio O. Expression of B-L (Ia-like) antigens on macrophages from chicken lymphoid organs. J Immunol (1982) 129(1):4–5. PubMed
Luhtala M, Koskinen R, Toivanen P, Vainio O. Characterization of chicken CD8-specific monoclonal antibodies recognizing novel epitopes. Scand J Immunol (1995) 42(1):171–4.10.1111/j.1365-3083.1995.tb03641.x PubMed DOI
Roge R, Thorsen J, Torring C, Ozbay A, Moller BK, Carstens J. Commonly used reference genes are actively regulated in in vitro stimulated lymphocytes. Scand J Immunol (2007) 65(2):202–9.10.1111/j.1365-3083.2006.01879.x PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res (2012) 40(15):e115.10.1093/nar/gks596 PubMed DOI PMC
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res (2008) 7(2):731–40.10.1021/pr700658q PubMed DOI
Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics (2011) 11(10):2019–26.10.1002/pmic.201000722 PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics (2014) 13(9):2513–26.10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods (2016) 13(9):731–40.10.1038/nmeth.3901 PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol (2013) 30(4):772–80.10.1093/molbev/mst010 PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol (2013) 30(12):2725–9.10.1093/molbev/mst197 PubMed DOI PMC