Hidden genes in birds
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dopisy, práce podpořená grantem, komentáře
PubMed
26283656
PubMed Central
PMC4539667
DOI
10.1186/s13059-015-0724-z
PII: 10.1186/s13059-015-0724-z
Knihovny.cz E-zdroje
- MeSH
- genomika metody MeSH
- lidé MeSH
- ptačí proteiny genetika MeSH
- ptáci klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ptačí proteiny MeSH
We report that a subset of avian genes is characterized by very high GC content and long G/C stretches. These sequence characteristics correlate with the frequent absence of these genes from genomic databases. We provide several examples where genes in this subset are mistakenly reported as missing in birds. www.dx.doi.org/10.1186/s13059-015-0725-y.
Zobrazit více v PubMed
Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, Warren WC, Mello CV. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol. 2014;15:565. doi: 10.1186/s13059-014-0565-1. PubMed DOI PMC
Cai Q, Qian X, Lang Y, Luo Y, Xu J, Pan S, Hui Y, Gou C, Cai Y, Hao M, et al. Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude. Genome Biol. 2013;14:R29. doi: 10.1186/gb-2013-14-3-r29. PubMed DOI PMC
Beug H, Steinlein P, Bartunek P, Hayman MJ. Avian hematopoietic cell culture: in vitro model systems to study oncogenic transformation of hematopoietic cells. Methods Enzymol. 1995;254:41–76. doi: 10.1016/0076-6879(95)54006-7. PubMed DOI
Dolznig H, Bartunek P, Nasmyth K, Mullner EW, Beug H. Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ. 1995;6:1341–1352. PubMed
Hayman MJ, Meyer S, Martin F, Steinlein P, Beug H. Self-renewal and differentiation of normal avian erythroid progenitor cells: regulatory roles of the TGF alpha/c-ErbB and SCF/c-kit receptors. Cell. 1993;74:157–169. doi: 10.1016/0092-8674(93)90303-8. PubMed DOI
Schroeder C, Gibson L, Nordstrom C, Beug H. The estrogen receptor cooperates with the TGF alpha receptor (c-erbB) in regulation of chicken erythroid progenitor self-renewal. EMBO J. 1993;12:951–960. PubMed PMC
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18. doi: 10.1186/gb-2011-12-2-r18. PubMed DOI PMC
Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14:R51. doi: 10.1186/gb-2013-14-5-r51. PubMed DOI PMC
Menendez C, Frees S, Bagga PS. QGRS-H Predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences. Nucleic Acids Res. 2012;40:W96–W103. doi: 10.1093/nar/gks422. PubMed DOI PMC
Griffin D, Burt DW. All chromosomes great and small: 10 years on. Chromosome Res. 2014;22:1–6. doi: 10.1007/s10577-014-9413-0. PubMed DOI
Costantini M, Di Filippo M, Auletta F, Bernardi G. Isochore pattern and gene distribution in the chicken genome. Gene. 2007;400:9–15. doi: 10.1016/j.gene.2007.05.025. PubMed DOI
International Chicken Genome Sequencing C Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716. doi: 10.1038/nature03154. PubMed DOI
Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E. Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma. 2007;116:519–530. doi: 10.1007/s00412-007-0117-5. PubMed DOI
Ishishita S, Tsuruta Y, Uno Y, Nakamura A, Nishida C, Griffin DK, Tsudzuki M, Ono T, Matsuda Y. Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails. Chromosome Res. 2014;22:15–34. doi: 10.1007/s10577-014-9402-3. PubMed DOI
Krasikova A, Fukagawa T, Zlotina A. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res. 2012;20:995–1008. doi: 10.1007/s10577-012-9321-0. PubMed DOI
Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010;20:1219–1228. doi: 10.1101/gr.106245.110. PubMed DOI PMC
Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 2015;43:D670–681. doi: 10.1093/nar/gku1177. PubMed DOI PMC
Identification of GC-rich LAT genes in birds
Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET
Antiviral Activity and Adaptive Evolution of Avian Tetherins
The Current View of Retroviruses as Seen from the Shoulders of a Giant
Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds