Antiviral Activity and Adaptive Evolution of Avian Tetherins
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
P50 AI150476
NIAID NIH HHS - United States
P50 GM082250
NIGMS NIH HHS - United States
Z01 AI000669
Intramural NIH HHS - United States
PubMed
32238588
PubMed Central
PMC7307100
DOI
10.1128/jvi.00416-20
PII: JVI.00416-20
Knihovny.cz E-zdroje
- Klíčová slova
- avian retrovirus, chicken, restriction factor, tetherin,
- MeSH
- antigen stromálních buněk kostní dřeně genetika imunologie MeSH
- buněčné linie MeSH
- fibroblasty imunologie virologie MeSH
- Galliformes genetika imunologie virologie MeSH
- genové produkty gag - virus lidské imunodeficience genetika imunologie MeSH
- HEK293 buňky MeSH
- HIV-1 genetika imunologie MeSH
- interakce hostitele a patogenu genetika imunologie MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- Passeriformes genetika imunologie virologie MeSH
- ptačí proteiny genetika imunologie MeSH
- ptačí sarkom genetika imunologie virologie MeSH
- regulace genové exprese MeSH
- replikace viru MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- selekce (genetika) MeSH
- signální transdukce MeSH
- uvolnění viru z buňky MeSH
- viry ptačího sarkomu genetika imunologie patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antigen stromálních buněk kostní dřeně MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- ptačí proteiny MeSH
Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.
Division of Basic Sciences Fred Hutchinson Cancer Research Center Seattle Washington USA
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Chemudupati M, Kenney AD, Bonifati S, Zani A, McMichael TM, Wu L, Yount JS. 2019. From APOBEC to ZAP: diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim Biophys Acta Mol Cell Res 1866:382–394. doi:10.1016/j.bbamcr.2018.09.012. PubMed DOI PMC
Neil S, Bieniasz P. 2009. Human immunodeficiency virus, restriction factors, and interferon. J Interferon Cytokine Res 29:569–580. doi:10.1089/jir.2009.0077. PubMed DOI PMC
Krishnan A, Iyer LM, Holland SJ, Boehm T, Aravind L. 2018. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc Natl Acad Sci U S A 115:E3201–E3210. doi:10.1073/pnas.1720897115. PubMed DOI PMC
Haugh KA, Shalginskikh N, Nogusa S, Skalka A, Katz RA, Balachandran S. 2014. The interferon-inducible antiviral protein Daxx is not essential for interferon-mediated protection against avian sarcoma virus. Virol J 11:100. doi:10.1186/1743-422X-11-100. PubMed DOI PMC
Zhu M, Ma X, Cui X, Zhou J, Li C, Huang L, Shang Y, Cheng Z. 2017. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein. Oncotarget 8:58865–58871. doi:10.18632/oncotarget.19378. PubMed DOI PMC
Li L, Feng W, Cheng Z, Yang J, Bi J, Wang X, Wang G. 2019. TRIM62-mediated restriction of avian leukosis virus subgroup J replication is dependent on the SPRY domain. Poultry Science 98:6019–6025. doi:10.3382/ps/pez408. PubMed DOI
Xie T, Feng M, Dai M, Mo G, Ruan Z, Wang G, Shi M, Zhang X. 2019. Cholesterol-25-hydroxylase is a chicken ISG that restricts ALV-J infection by producing 25-hydroxycholesterol. Viruses 11:498. doi:10.3390/v11060498. PubMed DOI PMC
Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, Staeheli P, Hartle S. 2011. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol 85:8307–8315. doi:10.1128/JVI.00535-11. PubMed DOI PMC
Ko J-H, Jin H-K, Asano A, Takada A, Ninomiya A, Kida H, Hokiyama H, Ohara M, Tsuzuki M, Nishibori M, Mizutani M, Watanabe T. 2002. Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res 12:595–601. doi:10.1101/gr.210702. PubMed DOI PMC
Goossens KE, Karpala AJ, Rohringer A, Ward A, Bean A. 2015. Characterisation of chicken viperin. Mol Immunol 63:373–380. doi:10.1016/j.molimm.2014.09.011. PubMed DOI
Shah M, Bharadwaj MSK, Gupta A, Kumar R, Kumar S. 2019. Chicken viperin inhibits Newcastle disease virus infection in vitro: a possible interaction with the viral matrix protein. Cytokine 120:28–40. doi:10.1016/j.cyto.2019.04.007. PubMed DOI
Santhakumar D, Rohaim M, Hussein HA, Hawes P, Ferreira HL, Behboudi S, Iqbal M, Nair V, Arns CW, Munir M. 2018. Chicken interferon-induced protein with tetratricopeptide repeats 5 antagonizes replication of RNA viruses. Sci Rep 8:6794. doi:10.1038/s41598-018-24905-y. PubMed DOI PMC
Smith SE, Gibson MS, Wash RS, Ferrara F, Wright E, Temperton N, Kellam P, Fife M. 2013. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J Virol 87:12957–12966. doi:10.1128/JVI.01443-13. PubMed DOI PMC
Chen S, Wang L, Chen J, Zhang L, Wang S, Goraya MU, Chi X, Na Y, Shao W, Yang Z, Zeng X, Chen S, Chen J-L. 2017. Avian interferon-inducible transmembrane protein family effectively restricts avian Tembusu virus infection. Front Microbiol 8:672. doi:10.3389/fmicb.2017.00672. PubMed DOI PMC
Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J. 2008. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252. doi:10.1016/j.chom.2008.03.001. PubMed DOI PMC
Neil SJD, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430. doi:10.1038/nature06553. PubMed DOI
Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, Bieniasz PD. 2009. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499–511. doi:10.1016/j.cell.2009.08.039. PubMed DOI PMC
Sauter D. 2014. Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 5:163. doi:10.3389/fmicb.2014.00163. PubMed DOI PMC
Le Tortorec A, Neil S. 2009. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83:11966–11978. doi:10.1128/JVI.01515-09. PubMed DOI PMC
Lopez LA, Yang SJ, Hauser H, Exline CM, Haworth KG, Oldenburg J, Cannon PM. 2010. Ebola virus glycoprotein counteracts BST-2/tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J Virol 84:7243–7255. doi:10.1128/JVI.02636-09. PubMed DOI PMC
Mansouri M, Viswanathan K, Douglas JL, Hines J, Gustin J, Moses AV, Fruh K. 2009. Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi’s sarcoma-associated herpesvirus. J Virol 83:9672–9681. doi:10.1128/JVI.00597-09. PubMed DOI PMC
Heusinger E, Kluge SF, Kirchhoff F, Sauter D. 2015. Early vertebrate evolution of the host restriction factor tetherin. J Virol 89:12154–12165. doi:10.1128/JVI.02149-15. PubMed DOI PMC
Blanco-Melo D, Venkatesh S, Bieniasz PD. 2016. Origins and evolution of tetherin, an orphan antiviral gene. Cell Host Microbe 20:189–201. doi:10.1016/j.chom.2016.06.007. PubMed DOI PMC
Burt DW. 2007. Emergence of the chicken as a model organism: implications for agriculture and biology. Poult Sci 86:1460–1471. doi:10.1093/ps/86.7.1460. PubMed DOI
Galão RP, Le Tortorec A, Pickering S, Kueck T, Neil S. 2012. Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12:633–644. doi:10.1016/j.chom.2012.10.007. PubMed DOI PMC
Andrew AJ, Miyagi E, Kao S, Strebel K. 2009. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6:80. doi:10.1186/1742-4690-6-80. PubMed DOI PMC
Hughes SH. 2004. The RCAS vector system. Folia Biol (Praha) 50:107–119. PubMed
Sukegawa S, Miyagi E, Bouamr F, Farkašová H, Strebel K. 2018. Mannose receptor 1 restricts HIV particle release from infected macrophages. Cell Rep 22:786–795. doi:10.1016/j.celrep.2017.12.085. PubMed DOI PMC
Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM. 1990. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 64:621–629. doi:10.1128/JVI.64.2.621-629.1990. PubMed DOI PMC
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. doi:10.1093/molbev/msm088. PubMed DOI
Yang Z, Wong WSW, Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118. doi:10.1093/molbev/msi097. PubMed DOI
Kosakovsky Pond SL, Frost S. 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi:10.1093/molbev/msi105. PubMed DOI
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. doi:10.1371/journal.pgen.1002764. PubMed DOI PMC
Kuang Z, Seo EJ, Leis J. 2011. Mechanism of inhibition of retrovirus release from cells by interferon-induced gene ISG15. J Virol 85:7153–7161. doi:10.1128/JVI.02610-10. PubMed DOI PMC
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. 2013. Defense genes missing from the flight division. Dev Comp Immunol 41:377–388. doi:10.1016/j.dci.2013.04.010. PubMed DOI PMC
Hron T, Pajer P, Pačes J, Bartůněk P, Elleder D. 2015. Hidden genes in birds. Genome Biol 16:164. doi:10.1186/s13059-015-0724-z. PubMed DOI PMC
McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB, Johnson WE, Neil SJD, Bieniasz PD. 2009. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog 5:e1000300. doi:10.1371/journal.ppat.1000300. PubMed DOI PMC
Gupta RK, Hué S, Schaller T, Verschoor E, Pillay D, Towers GJ. 2009. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLoS Pathog 5:e1000443. doi:10.1371/journal.ppat.1000443. PubMed DOI PMC
Lim ES, Malik HS, Emerman M. 2010. Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J Virol 84:7124–7134. doi:10.1128/JVI.00468-10. PubMed DOI PMC
Daugherty MD, Malik HS. 2012. Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46:677–700. doi:10.1146/annurev-genet-110711-155522. PubMed DOI
Payne LN, Nair V. 2012. The long view: 40 years of avian leukosis research. Avian Pathol 41:11–19. doi:10.1080/03079457.2011.646237. PubMed DOI
Gao Y, Liu Y, Guan X, Li X, Yun B, Qi X, Wang Y, Gao H, Cui H, Liu C, Zhang Y, Wang X, Gao Y. 2015. Differential expression of immune-related cytokine genes in response to J group avian leukosis virus infection in vivo. Mol Immunol 64:106–111. doi:10.1016/j.molimm.2014.11.004. PubMed DOI
Lin W, Xu Z, Yan Y, Zhang H, Li H, Chen W, Chen F, Xie Q. 2018. Avian leukosis virus subgroup J Attenuates type I interferon production through blocking IκB phosphorylation. Front Microbiol 9:1089. doi:10.3389/fmicb.2018.01089. PubMed DOI PMC
Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. 2006. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177:3260–3265. doi:10.4049/jimmunol.177.5.3260. PubMed DOI
Homann S, Smith D, Little S, Richman D, Guatelli J. 2011. Upregulation of BST-2/tetherin by HIV infection in vivo. J Virol 85:10659–10668. doi:10.1128/JVI.05524-11. PubMed DOI PMC
Sauter D, Hotter D, Engelhart S, Giehler F, Kieser A, Kubisch C, Kirchhoff F. 2013. A rare missense variant abrogates the signaling activity of tetherin/BST-2 without affecting its effect on virus release. Retrovirology 10:85. doi:10.1186/1742-4690-10-85. PubMed DOI PMC
Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J. 2013. Stimulation of NF-κB activity by the HIV restriction factor BST2. J Virol 87:2046–2057. doi:10.1128/JVI.02272-12. PubMed DOI PMC
Warren CJ, Sawyer SL. 2019. How host genetics dictates successful viral zoonosis. PLoS Biol 17:e3000217. doi:10.1371/journal.pbio.3000217. PubMed DOI PMC
Blondeau C, Pelchen-Matthews A, Mlcochova P, Marsh M, Milne RSB, Towers GJ. 2013. Tetherin restricts herpes simplex virus 1 and is antagonized by glycoprotein M. J Virol 87:13124–13133. doi:10.1128/JVI.02250-13. PubMed DOI PMC
Gnirß K, Zmora P, Blazejewska P, Winkler M, Lins A, Nehlmeier I, Gärtner S, Moldenhauer A-S, Hofmann-Winkler H, Wolff T, Schindler M, Pöhlmann S. 2015. Tetherin sensitivity of influenza A viruses is strain specific: role of hemagglutinin and neuraminidase. J Virol 89:9178–9188. doi:10.1128/JVI.00615-15. PubMed DOI PMC
Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK. 1998. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295–304. doi:10.1006/viro.1998.9290. PubMed DOI
Federspiel MJ, Hughes SH. 1997. Retroviral gene delivery. Methods Cell Biol 52:179–214. doi:10.1016/S0091-679X(08)60379-9. PubMed DOI
Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Suzek TO, Tatusova TA, Wagner L. 2004. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32:D35–D40. doi:10.1093/nar/gkh073. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315. PubMed DOI
Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164. doi:10.1126/science.252.5009.1162. PubMed DOI
Eisenhaber B, Bork P, Eisenhaber F. 1999. Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292:741–758. doi:10.1006/jmbi.1999.3069. PubMed DOI
Koslová A, Kučerová D, Reinišová M, Geryk J, Trefil P, Hejnar J. 2018. Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses 10:605. doi:10.3390/v10110605. PubMed DOI PMC
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J-S, Concordet J-P. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. doi:10.1186/s13059-016-1012-2. PubMed DOI PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi:10.1038/nprot.2013.143. PubMed DOI PMC
Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. 2010. A Rapid and General Assay for Monitoring Endogenous Gene Modification. Methods Mol Biol 649:247–256. doi:10.1007/978-1-60761-753-2_15. PubMed DOI
Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. 2018. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol 35:2582–2584. doi:10.1093/molbev/msy159. PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010. PubMed DOI
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost S. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi:10.1093/molbev/msl051. PubMed DOI
Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819. doi:10.1093/molbev/msx116. PubMed DOI
Independent loss events of a functional tetherin gene in galliform birds
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?