Independent loss events of a functional tetherin gene in galliform birds
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
20-22063S
Grantová Agentura České Republiky (GAČR)
SA 2676/1-2
Deutsche Forschungsgemeinschaft (DFG)
Canon Foundation in Europe (CFE)
COVID-19 research grant
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK)
PubMed
37712707
PubMed Central
PMC10617486
DOI
10.1128/jvi.00803-23
Knihovny.cz E-resources
- Keywords
- gene loss, restriction factors, retroviruses, tetherin, turkey,
- MeSH
- Bone Marrow Stromal Antigen 2 genetics MeSH
- Biological Evolution MeSH
- Antigens, CD genetics metabolism MeSH
- Galliformes * genetics MeSH
- GPI-Linked Proteins * genetics metabolism MeSH
- Evolution, Molecular MeSH
- Avian Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bone Marrow Stromal Antigen 2 MeSH
- Antigens, CD MeSH
- GPI-Linked Proteins * MeSH
- Avian Proteins MeSH
Birds represent important hosts for numerous viruses, including zoonotic viruses and pathogens with the potential to cause major economic losses to the poultry industry. Viral replication and transmission can be inhibited or blocked by the action of antiviral restriction factors (RFs) encoded by the host. One well-characterized RF is tetherin, a protein that directly blocks the release of newly formed viral particles from infected cells. Here, we describe the evolutionary loss of a functional tetherin gene in two galliform birds, turkey (Meleagris gallopavo) and Mikado pheasant (Syrmaticus mikado). Moreover, we demonstrate that the structurally related protein TMCC(aT) exerts antiviral activity in several birds, albeit by a mechanism different from that of tetherin. The evolutionary scenario described here represents the first documented loss-of-tetherin cases in vertebrates.
See more in PubMed
Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus A, Fouchier RAM. 2006. Global patterns of influenza a virus in wild birds. Science 312:384–388. doi:10.1126/science.1122438 PubMed DOI
Hughes LA, Savage C, Naylor C, Bennett M, Chantrey J, Jones R. 2009. Genetically diverse coronaviruses in wild bird populations of northern England. Emerg Infect Dis 15:1091–1094. doi:10.3201/eid1507.090067 PubMed DOI PMC
Chamings A, Nelson TM, Vibin J, Wille M, Klaassen M, Alexandersen S. 2018. Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds. Sci Rep 8:5980. doi:10.1038/s41598-018-24407-x PubMed DOI PMC
Reed KD, Meece JK, Henkel JS, Shukla SK. 2003. Birds, migration and emerging zoonoses: west Nile virus, Lyme disease, influenza A and enteropathogens. Clin Med Res 1:5–12. doi:10.3121/cmr.1.1.5 PubMed DOI PMC
Georgopoulou I, Tsiouris V. 2008. The potential role of migratory birds in the transmission of zoonoses. Vet Ital 44:671–677. PubMed
Wille M, Holmes EC. 2020. Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiol Rev 44:631–644. doi:10.1093/femsre/fuaa026 PubMed DOI PMC
Payne LN, Nair V. 2012. The long view: 40 years of avian leukosis research. Avian Pathol 41:11–19. doi:10.1080/03079457.2011.646237 PubMed DOI
Nabi G, Wang Y, Lü L, Jiang C, Ahmad S, Wu Y, Li D. 2021. Bats and birds as viral reservoirs: a physiological and ecological perspective. Sci Total Environ 754:142372. doi:10.1016/j.scitotenv.2020.142372 PubMed DOI PMC
Li L, Feng W, Cheng Z, Yang J, Bi J, Wang X, Wang G. 2019. TRIM62-mediated restriction of avian leukosis virus subgroup J replication is dependent on the SPRY domain. Poult Sci 98:6019–6025. doi:10.3382/ps/pez408 PubMed DOI
Zhou J-R, Liu J-H, Li H-M, Zhao Y, Cheng Z, Hou Y-M, Guo H-J. 2020. Regulatory effects of chicken TRIM25 on the replication of ALV-A and the MDA5-mediated type I interferon response. Vet Res 51:145. doi:10.1186/s13567-020-00870-1 PubMed DOI PMC
Zhu M, Ma X, Cui X, Zhou J, Li C, Huang L, Shang Y, Cheng Z. 2017. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein. Oncotarget 8:58865–58871. doi:10.18632/oncotarget.19378 PubMed DOI PMC
Greger JG, Katz RA, Ishov AM, Maul GG, Skalka AM. 2005. The cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription. J Virol 79:4610–4618. doi:10.1128/JVI.79.8.4610-4618.2005 PubMed DOI PMC
Goossens KE, Karpala AJ, Rohringer A, Ward A, Bean AGD. 2015. Characterisation of chicken viperin. Mol Immunol 63:373–380. doi:10.1016/j.molimm.2014.09.011 PubMed DOI
Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, Staeheli P, Härtle S. 2011. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol 85:8307–8315. doi:10.1128/JVI.00535-11 PubMed DOI PMC
Ko J-H, Jin H-K, Asano A, Takada A, Ninomiya A, Kida H, Hokiyama H, Ohara M, Tsuzuki M, Nishibori M, Mizutani M, Watanabe T. 2002. Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res 12:595–601. doi:10.1101/gr.210702 PubMed DOI PMC
Shah M, Bharadwaj MSK, Gupta A, Kumar R, Kumar S. 2019. Chicken viperin inhibits newcastle disease virus infection in vitro: a possible interaction with the viral matrix protein. Cytokine 120:28–40. doi:10.1016/j.cyto.2019.04.007 PubMed DOI
Santhakumar D, Rohaim M, Hussein HA, Hawes P, Ferreira HL, Behboudi S, Iqbal M, Nair V, Arns CW, Munir M. 2018. Chicken interferon-induced protein with tetratricopeptide repeats 5 antagonizes replication of RNA viruses. Sci Rep 8:6794. doi:10.1038/s41598-018-24905-y PubMed DOI PMC
Smith SE, Gibson MS, Wash RS, Ferrara F, Wright E, Temperton N, Kellam P, Fife M. 2013. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J Virol 87:12957–12966. doi:10.1128/JVI.01443-13 PubMed DOI PMC
Chen S, Wang L, Chen J, Zhang L, Wang S, Goraya MU, Chi X, Na Y, Shao W, Yang Z, Zeng X, Chen S, Chen J-L. 2017. Avian interferon-inducible transmembrane protein family effectively restricts avian tembusu virus infection. Front Microbiol 8:672. doi:10.3389/fmicb.2017.00672 PubMed DOI PMC
Neil SJD, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430. doi:10.1038/nature06553 PubMed DOI
Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J. 2008. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252. doi:10.1016/j.chom.2008.03.001 PubMed DOI PMC
Mansouri M, Viswanathan K, Douglas JL, Hines J, Gustin J, Moses AV, Früh K. 2009. Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of kaposi's sarcoma-associated herpesvirus. J Virol 83:9672–9681. doi:10.1128/JVI.00597-09 PubMed DOI PMC
Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman T, Sundberg EJ, Frieman MB. 2015. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J Virol 89:11820–11833. doi:10.1128/JVI.02274-15 PubMed DOI PMC
Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, Johnson WE, Westmoreland S, Evans DT, Emerman M. 2009. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 5:e1000429. doi:10.1371/journal.ppat.1000429 PubMed DOI PMC
Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, Johnson MC, Munch J, Kirchhoff F, Bieniasz PD, Hatziioannou T. 2009. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6:54–67. doi:10.1016/j.chom.2009.05.008 PubMed DOI PMC
Le Tortorec A, Neil SJD. 2009. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83:11966–11978. doi:10.1128/JVI.01515-09 PubMed DOI PMC
Sauter D, Schindler M, Specht A, Landford WN, Münch J, Kim K-A, Votteler J, Schubert U, Bibollet-Ruche F, Keele BF, Takehisa J, Ogando Y, Ochsenbauer C, Kappes JC, Ayouba A, Peeters M, Learn GH, Shaw G, Sharp PM, Bieniasz P, Hahn BH, Hatziioannou T, Kirchhoff F. 2009. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6:409–421. doi:10.1016/j.chom.2009.10.004 PubMed DOI PMC
Gupta RK, Mlcochova P, Pelchen-Matthews A, Petit SJ, Mattiuzzo G, Pillay D, Takeuchi Y, Marsh M, Towers GJ. 2009. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc Natl Acad Sci U S A 106:20889–20894. doi:10.1073/pnas.0907075106 PubMed DOI PMC
Heusinger E, Kluge SF, Kirchhoff F, Sauter D. 2015. Early vertebrate evolution of the host restriction factor tetherin. J Virol 89:12154–12165. doi:10.1128/JVI.02149-15 PubMed DOI PMC
Blanco-Melo D, Venkatesh S, Bieniasz PD. 2016. Origins and evolution of tetherin, an orphan antiviral gene. Cell Host Microbe 20:189–201. doi:10.1016/j.chom.2016.06.007 PubMed DOI PMC
Krchlíková V, Fábryová H, Hron T, Young JM, Koslová A, Hejnar J, Strebel K, Elleder D. 2020. Antiviral activity and adaptive evolution of avian tetherins. J Virol 94:e00416-20. doi:10.1128/JVI.00416-20 PubMed DOI PMC
Kumar S, Stecher G, Suleski M, Hedges SB. 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819. doi:10.1093/molbev/msx116 PubMed DOI
Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nat Rev Immunol 14:36–49. doi:10.1038/nri3581 PubMed DOI PMC
Casartelli N, Sourisseau M, Feldmann J, Guivel-Benhassine F, Mallet A, Marcelin A-G, Guatelli J, Schwartz O. 2010. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog 6:e1000955. doi:10.1371/journal.ppat.1000955 PubMed DOI PMC
Murphy L, Varela M, Desloire S, Ftaich N, Murgia C, Golder M, Neil S, Spencer TE, Wootton SK, Lavillette D, Terzian C, Palmarini M, Arnaud F. 2015. The sheep tetherin paralog oBST2B blocks envelope glycoprotein incorporation into nascent retroviral virions. J Virol 89:535–544. doi:10.1128/JVI.02751-14 PubMed DOI PMC
Jolly C, Booth NJ, Neil SJD. 2010. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 84:12185–12199. doi:10.1128/JVI.01447-10 PubMed DOI PMC
Kuhl BD, Sloan RD, Donahue DA, Bar-Magen T, Liang C, Wainberg MA. 2010. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7:115. doi:10.1186/1742-4690-7-115 PubMed DOI PMC
Verhelst J, Hulpiau P, Saelens X. 2013. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev 77:551–566. doi:10.1128/MMBR.00024-13 PubMed DOI PMC
Braun BA, Marcovitz A, Camp JG, Jia R, Bejerano G. 2015. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales. Proc Natl Acad Sci U S A 112:8036–8040. doi:10.1073/pnas.1501844112 PubMed DOI PMC
Ahn M, Cui J, Irving AT, Wang L-F. 2016. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci Rep 6:21722. doi:10.1038/srep21722 PubMed DOI PMC
Lazear HM, Schoggins JW, Diamond MS. 2019. Shared and distinct functions of type I and type III interferons. Immunity 50:907–923. doi:10.1016/j.immuni.2019.03.025 PubMed DOI PMC
Guzzo C, Jung M, Graveline A, Banfield BW, Gee K. 2012. IL-27 increases BST-2 expression in human monocytes and T cells independently of type I IFN. Sci Rep 2:974. doi:10.1038/srep00974 PubMed DOI PMC
Oudshoorn D, van Boheemen S, Sánchez-Aparicio MT, Rajsbaum R, García-Sastre A, Versteeg GA. 2012. HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells. PLoS One 7:e29870. doi:10.1371/journal.pone.0029870 PubMed DOI PMC
Hayward JA, Tachedjian M, Johnson A, Irving AT, Gordon TB, Cui J, Nicolas A, Smith I, Boyd V, Marsh GA, Baker ML, Wang L-F, Tachedjian G, Lowen AC. 2022. Unique evolution of antiviral tetherin in bats. J Virol 96:e0115222. doi:10.1128/jvi.01152-22 PubMed DOI PMC
Alqutami F, Senok A, Hachim M. 2021. COVID-19 transcriptomic atlas: a comprehensive analysis of COVID-19 related transcriptomics datasets. Front Genet 12:755222. doi:10.3389/fgene.2021.755222 PubMed DOI PMC
Peng Y, Luo X, Chen Y, Peng L, Deng C, Fei Y, Zhang W, Zhao Y. 2020. LncRNA and mRNA expression profile of peripheral blood mononuclear cells in primary Sjögren’s syndrome patients. Sci Rep 10:19629. doi:10.1038/s41598-020-76701-2 PubMed DOI PMC
Buffalo CZ, Stürzel CM, Heusinger E, Kmiec D, Kirchhoff F, Hurley JH, Ren X. 2019. Structural basis for tetherin antagonism as a barrier to zoonotic lentiviral transmission. Cell Host Microbe 26:359–368. doi:10.1016/j.chom.2019.08.002 PubMed DOI PMC
Thomas JM, Allison AB, Holmes EC, Phillips JE, Bunting EM, Yabsley MJ, Brown JD. 2015. Molecular surveillance for lymphoproliferative disease virus in wild turkeys (Meleagris gallopavo) from the eastern United States. PLoS One 10:e0122644. doi:10.1371/journal.pone.0122644 PubMed DOI PMC
MacDonald AM, Barta JR, McKay M, Lair S, Le Net R, Baldwin F, Pople N, Nemeth NM. 2019. Lymphoproliferative disease virus in wild turkeys (Meleagris gallopavo) from Manitoba and Quebec, Canada. Avian Dis 63:506–510. doi:10.1637/aviandiseases-D-19-00102 PubMed DOI
MacDonald AM, Jardine CM, Bowman J, Susta L, Nemeth NM. 2019. Detection of lymphoproliferative disease virus in Canada in a survey for viruses in Ontario wild turkeys (Meleagris gallopavo). J Wildl Dis 55:113–122. doi:10.7589/2018-01-013 PubMed DOI
Hughes SH. 2004. The RCAS vector system. Folia Biol 50:107–119. PubMed
Braun E, Hotter D, Koepke L, Zech F, Groß R, Sparrer KMJ, Müller JA, Pfaller CK, Heusinger E, Wombacher R, Sutter K, Dittmer U, Winkler M, Simmons G, Jakobsen MR, Conzelmann K-K, Pöhlmann S, Münch J, Fackler OT, Kirchhoff F, Sauter D. 2019. Guanylate-binding proteins 2 and 5 exert broad antiviral activity by inhibiting furin-mediated processing of viral envelope proteins. Cell Rep 27:2092–2104. doi:10.1016/j.celrep.2019.04.063 PubMed DOI
Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Suzek TO, Tatusova TA, Wagner L. 2004. Database resources of the national center for biotechnology information: update. Nucleic Acids Res 32:D35–40. doi:10.1093/nar/gkh073 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315 PubMed DOI
Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164. doi:10.1126/science.252.5009.1162 PubMed DOI
Eisenhaber B, Bork P, Eisenhaber F. 1999. Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292:741–758. doi:10.1006/jmbi.1999.3069 PubMed DOI
Pierleoni A, Martelli PL, Casadio R. 2008. Predgpi: a GPI-anchor predictor. BMC Bioinformatics 9:392. doi:10.1186/1471-2105-9-392 PubMed DOI PMC
Kucerová D, Plachy J, Reinisová M, Senigl F, Trejbalová K, Geryk J, Hejnar J. 2013. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J Virol 87:8399–8407. doi:10.1128/JVI.03180-12 PubMed DOI PMC