Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET

. 2022 Dec 20 ; 15 (1) : . [epub] 20221220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36680044

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are key RNA virus sensors belonging to the RIG-I-like receptor (RLR) family. The activation of the RLR inflammasome leads to the establishment of antiviral state, mainly through interferon-mediated signaling. The evolutionary dynamics of RLRs has been studied mainly in mammals, where rare cases of RLR gene losses were described. By in silico screening of avian genomes, we previously described two independent disruptions of MDA5 in two bird orders. Here, we extend this analysis to approximately 150 avian genomes and report 16 independent evolutionary events of RIG-I inactivation. Interestingly, in almost all cases, these inactivations are coupled with genetic disruptions of RIPLET/RNF135, an ubiquitin ligase RIG-I regulator. Complete absence of any detectable RIG-I sequences is unique to several galliform species, including the domestic chicken (Gallus gallus). We further aimed to determine compensatory evolution of MDA5 in RIG-I-deficient species. While we were unable to show any specific global pattern of adaptive evolution in RIG-I-deficient species, in galliforms, the analyses of positive selection and surface charge distribution support the hypothesis of some compensatory evolution in MDA5 after RIG-I loss. This work highlights the dynamic nature of evolution in bird RNA virus sensors.

Zobrazit více v PubMed

Rehwinkel J., Gack M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020;20:537–551. doi: 10.1038/s41577-020-0288-3. PubMed DOI PMC

Palm N.W., Medzhitov R. Pattern Recognition Receptors and Control of Adaptive Immunity. Immunol. Rev. 2009;227:221–233. doi: 10.1111/j.1600-065X.2008.00731.x. PubMed DOI

Magor K.E. Evolution of RNA Sensing Receptors in Birds. Immunogenetics. 2022;74:149–165. doi: 10.1007/s00251-021-01238-1. PubMed DOI PMC

Kawai T., Akira S. The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. Int. Immunol. 2009;21:317–337. doi: 10.1093/intimm/dxp017. PubMed DOI PMC

Pålsson-McDermott E.M., O’Neill L.A.J. Building an Immune System from Nine Domains. Biochem. Soc. Trans. 2007;35:1437–1444. doi: 10.1042/BST0351437. PubMed DOI

Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA Helicase RIG-I Has an Essential Function in Double-Stranded RNA-Induced Innate Antiviral Responses. Nat. Immunol. 2004;5:730–737. doi: 10.1038/ni1087. PubMed DOI

Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., Goodbourn S., Randall R.E. The V Proteins of Paramyxoviruses Bind the IFN-Inducible RNA Helicase, Mda-5, and Inhibit Its Activation of the IFN-Beta Promoter. Proc. Natl. Acad. Sci. USA. 2004;101:17264–17269. doi: 10.1073/pnas.0407639101. PubMed DOI PMC

Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y.-M., Gale M., Jr., Akira S., et al. Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. J. Immunol. 2005;175:2851–2858. doi: 10.4049/jimmunol.175.5.2851. PubMed DOI

Rodriguez K.R., Bruns A.M., Horvath C.M. MDA5 and LGP2: Accomplices and Antagonists of Antiviral Signal Transduction. J. Virol. 2014;88:8194–8200. doi: 10.1128/JVI.00640-14. PubMed DOI PMC

Yu M., Levine S.J. Toll-like Receptor, RIG-I-like Receptors and the NLRP3 Inflammasome: Key Modulators of Innate Immune Responses to Double-Stranded RNA Viruses. Cytokine Growth Factor Rev. 2011;22:63–72. doi: 10.1016/j.cytogfr.2011.02.001. PubMed DOI PMC

Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nature. 2006;441:101–105. doi: 10.1038/nature04734. PubMed DOI

Brisse M., Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019;10:1586. doi: 10.3389/fimmu.2019.01586. PubMed DOI PMC

Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.-K., Schlee M., et al. 5′-Triphosphate RNA Is the Ligand for RIG-I. Science. 2006;314:994–997. doi: 10.1126/science.1132505. PubMed DOI

Pichlmair A., Schulz O., Tan C.P., Näslund T.I., Liljeström P., Weber F., Reis e Sousa C. RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5′-Phosphates. Science. 2006;314:997–1001. doi: 10.1126/science.1132998. PubMed DOI

Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., Schuberth C., Van der Veen A.G., Fujimura T., Rehwinkel J., et al. Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5′-Diphosphates. Nature. 2014;514:372–375. doi: 10.1038/nature13590. PubMed DOI PMC

Schuberth-Wagner C., Ludwig J., Bruder A.K., Herzner A.-M., Zillinger T., Goldeck M., Schmidt T., Schmid-Burgk J.L., Kerber R., Wolter S., et al. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity. 2015;43:41–51. doi: 10.1016/j.immuni.2015.06.015. PubMed DOI PMC

Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. Length-Dependent Recognition of Double-Stranded Ribonucleic Acids by Retinoic Acid-Inducible Gene-I and Melanoma Differentiation-Associated Gene 5. J. Exp. Med. 2008;205:1601–1610. doi: 10.1084/jem.20080091. PubMed DOI PMC

Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S. Structural Basis for dsRNA Recognition, Filament Formation, and Antiviral Signal Activation by MDA5. Cell. 2013;152:276–289. doi: 10.1016/j.cell.2012.11.048. PubMed DOI

Chiang C., Gack M.U. Post-Translational Control of Intracellular Pathogen Sensing Pathways. Trends Immunol. 2017;38:39–52. doi: 10.1016/j.it.2016.10.008. PubMed DOI PMC

Lemos de Matos A., McFadden G., Esteves P.J. Positive Evolutionary Selection on the RIG-I-like Receptor Genes in Mammals. PLoS ONE. 2013;8:e81864. doi: 10.1371/journal.pone.0081864. PubMed DOI PMC

Cagliani R., Forni D., Tresoldi C., Pozzoli U., Filippi G., Rainone V., De Gioia L., Clerici M., Sironi M. RIG-I-like Receptors Evolved Adaptively in Mammals, with Parallel Evolution at LGP2 and RIG-I. J. Mol. Biol. 2014;426:1351–1365. doi: 10.1016/j.jmb.2013.10.040. PubMed DOI

Albalat R., Cañestro C. Evolution by Gene Loss. Nat. Rev. Genet. 2016;17:379–391. doi: 10.1038/nrg.2016.39. PubMed DOI

Guijarro-Clarke C., Holland P.W.H., Paps J. Widespread Patterns of Gene Loss in the Evolution of the Animal Kingdom. Nat. Ecol. Evol. 2020;4:519–523. doi: 10.1038/s41559-020-1129-2. PubMed DOI

Xu L., Yu D., Fan Y., Peng L., Wu Y., Yao Y.-G. Loss of RIG-I Leads to a Functional Replacement with MDA5 in the Chinese Tree Shrew. Proc. Natl. Acad. Sci. USA. 2016;113:10950–10955. doi: 10.1073/pnas.1604939113. PubMed DOI PMC

Fischer H., Tschachler E., Eckhart L. Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Front. Immunol. 2020;11:939. doi: 10.3389/fimmu.2020.00939. PubMed DOI PMC

Sharma V., Hecker N., Walther F., Stuckas H., Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol. Biol. Evol. 2020;37:1847–1854. doi: 10.1093/molbev/msaa058. PubMed DOI

Velová H., Gutowska-Ding M.W., Burt D.W., Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol. Biol. Evol. 2018;35:2170–2184. doi: 10.1093/molbev/msy119. PubMed DOI PMC

Bainová H., Králová T., Bryjová A., Albrecht T., Bryja J., Vinkler M. First Evidence of Independent Pseudogenization of Toll-like Receptor 5 in Passerine Birds. Dev. Comp. Immunol. 2014;45:151–155. doi: 10.1016/j.dci.2014.02.010. PubMed DOI

Zou J., Chang M., Nie P., Secombes C.J. Origin and Evolution of the RIG-I like RNA Helicase Gene Family. BMC Evol. Biol. 2009;9:85. doi: 10.1186/1471-2148-9-85. PubMed DOI PMC

Barber M.R.W., Aldridge J.R., Jr., Webster R.G., Magor K.E. Association of RIG-I with Innate Immunity of Ducks to Influenza. Proc. Natl. Acad. Sci. USA. 2010;107:5913–5918. doi: 10.1073/pnas.1001755107. PubMed DOI PMC

Zheng W., Satta Y. Functional Evolution of Avian RIG-I-like Receptors. Genes. 2018;9:456. doi: 10.3390/genes9090456. PubMed DOI PMC

Krchlíková V., Hron T., Těšický M., Li T., Hejnar J., Vinkler M., Elleder D. Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective. Viruses. 2021;13:2131. doi: 10.3390/v13112131. PubMed DOI PMC

Fiddaman S.R., Vinkler M., Spiro S.G., Levy H., Emerling C.A., Boyd A.C., Dimopoulos E.A., Vianna J.A., Cole T.L., Pan H., et al. Adaptation and Cryptic Pseudogenization in Penguin Toll-like Receptors. Mol. Biol. Evol. 2022;39:msab354. doi: 10.1093/molbev/msab354. PubMed DOI PMC

Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The Global Diversity of Birds in Space and Time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Jetz W., Thomas G.H., Joy J.B., Redding D.W., Hartmann K., Mooers A.O. Global Distribution and Conservation of Evolutionary Distinctness in Birds. Curr. Biol. 2014;24:919–930. doi: 10.1016/j.cub.2014.03.011. PubMed DOI

Katoh K., Kuma K.-I., Toh H., Miyata T. MAFFT Version 5: Improvement in Accuracy of Multiple Sequence Alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC

Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Zhang J., Nielsen R., Yang Z. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Mol. Biol. Evol. 2005;22:2472–2479. doi: 10.1093/molbev/msi237. PubMed DOI

Kosakovsky Pond S.L., Frost S.D.W. Not so Different after All: A Comparison of Methods for Detecting Amino Acid Sites under Selection. Mol. Biol. Evol. 2005;22:1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI

Murrell B., Wertheim J.O., Moola S., Weighill T., Scheffler K., Kosakovsky Pond S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC

Zamyatnin A.A. Amino Acid, Peptide, and Protein Volume in Solution. Annu. Rev. Biophys. Bioeng. 1984;13:145–165. doi: 10.1146/annurev.bb.13.060184.001045. PubMed DOI

Uchikawa E., Lethier M., Malet H., Brunel J., Gerlier D., Cusack S. Structural Analysis of dsRNA Binding to Anti-Viral Pattern Recognition Receptors LGP2 and MDA5. Mol. Cell. 2016;62:586–602. doi: 10.1016/j.molcel.2016.04.021. PubMed DOI PMC

Ren J., Wen L., Gao X., Jin C., Xue Y., Yao X. DOG 1.0: Illustrator of Protein Domain Structures. Cell Res. 2009;19:271–273. doi: 10.1038/cr.2009.6. PubMed DOI

Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., et al. Protein Complex Prediction with AlphaFold-Multimer. BioRxiv. 2022 doi: 10.1101/2021.10.04.463034. DOI

McGuffin L.J., Aldowsari F.M.F., Alharbi S.M.A., Adiyaman R. ModFOLD8: Accurate Global and Local Quality Estimates for 3D Protein Models. Nucleic Acids Res. 2021;49:W425–W430. doi: 10.1093/nar/gkab321. PubMed DOI PMC

Těšický M., Velová H., Novotný M., Kreisinger J., Beneš V., Vinkler M. Positive Selection and Convergent Evolution Shape Molecular Phenotypic Traits of Innate Immunity Receptors in Tits (Paridae) Mol. Ecol. 2020;29:3056–3070. doi: 10.1111/mec.15547. PubMed DOI

Donald J.E., Kulp D.W., DeGrado W.F. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins Struct. Funct. Bioinform. 2011;79:898–915. doi: 10.1002/prot.22927. PubMed DOI PMC

Onofrio A., Parisi G., Punzi G., Todisco S., Di Noia M.A., Bossis F., Turi A., De Grassi A., Pierri C.L. Distance-Dependent Hydrophobic-Hydrophobic Contacts in Protein Folding Simulations. Phys. Chem. Chem. Phys. 2014;16:18907–18917. doi: 10.1039/C4CP01131G. PubMed DOI

Tien M.Z., Meyer A.G., Sydykova D.K., Spielman S.J., Wilke C.O. Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS ONE. 2013;8:e80635. doi: 10.1371/journal.pone.0080635. PubMed DOI PMC

Richter S., Wenzel A., Stein M., Gabdoulline R.R., Wade R.C. webPIPSA: A Web Server for the Comparison of Protein Interaction Properties. Nucleic Acids Res. 2008;36:W276–W280. doi: 10.1093/nar/gkn181. PubMed DOI PMC

Suzuki R., Shimodaira H. Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI

Magor K.E., Miranzo Navarro D., Barber M.R.W., Petkau K., Fleming-Canepa X., Blyth G.A.D., Blaine A.H. Defense Genes Missing from the Flight Division. Dev. Comp. Immunol. 2013;41:377–388. doi: 10.1016/j.dci.2013.04.010. PubMed DOI PMC

Hayashi T., Watanabe C., Suzuki Y., Tanikawa T., Uchida Y., Saito T. Chicken MDA5 Senses Short Double-Stranded RNA with Implications for Antiviral Response against Avian Influenza Viruses in Chicken. J. Innate Immun. 2014;6:58–71. doi: 10.1159/000351583. PubMed DOI PMC

Xu L., Yu D., Fan Y., Liu Y.-P., Yao Y.-G. Evolutionary Selection on MDA5 and LGP2 in the Chicken Preserves Antiviral Competence in the Absence of RIG-I. J. Genet. Genom. 2019;46:499–503. doi: 10.1016/j.jgg.2019.10.001. PubMed DOI

Karpala A.J., Stewart C., McKay J., Lowenthal J.W., Bean A.G.D. Characterization of Chicken Mda5 Activity: Regulation of IFN-β in the Absence of RIG-I Functionality. J. Immunol. 2011;186:5397–5405. doi: 10.4049/jimmunol.1003712. PubMed DOI

Sirén J., Imaizumi T., Sarkar D., Pietilä T., Noah D.L., Lin R., Hiscott J., Krug R.M., Fisher P.B., Julkunen I., et al. Retinoic Acid Inducible Gene-I and Mda-5 Are Involved in Influenza A Virus-Induced Expression of Antiviral Cytokines. Microbes Infect. 2006;8:2013–2020. doi: 10.1016/j.micinf.2006.02.028. PubMed DOI

Lee S.B., Park Y.H., Chungu K., Woo S.J., Han S.T., Choi H.J., Rengaraj D., Han J.Y. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front. Immunol. 2020;11:678. doi: 10.3389/fimmu.2020.00678. PubMed DOI PMC

Barber M.R.W., Aldridge J.R., Jr., Fleming-Canepa X., Wang Y.-D., Webster R.G., Magor K.E. Identification of Avian RIG-I Responsive Genes during Influenza Infection. Mol. Immunol. 2013;54:89–97. doi: 10.1016/j.molimm.2012.10.038. PubMed DOI PMC

Hron T., Pajer P., Pačes J., Bartůněk P., Elleder D. Hidden Genes in Birds. Genome Biol. 2015;16:164. doi: 10.1186/s13059-015-0724-z. PubMed DOI PMC

Kumar S., Suleski M., Craig J.M., Kasprowicz A.E., Sanderford M., Li M., Stecher G., Hedges S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022;39:msac174. doi: 10.1093/molbev/msac174. PubMed DOI PMC

Oshiumi H., Matsumoto M., Hatakeyama S., Seya T. Riplet/RNF135, a RING Finger Protein, Ubiquitinates RIG-I to Promote Interferon-Beta Induction during the Early Phase of Viral Infection. J. Biol. Chem. 2009;284:807–817. doi: 10.1074/jbc.M804259200. PubMed DOI

Hayman T.J., Hsu A.C., Kolesnik T.B., Dagley L.F., Willemsen J., Tate M.D., Baker P.J., Kershaw N.J., Kedzierski L., Webb A.I., et al. RIPLET, and Not TRIM25, Is Required for Endogenous RIG-I-Dependent Antiviral Responses. Immunol. Cell Biol. 2019;97:840–852. doi: 10.1111/imcb.12284. PubMed DOI

Buckmaster M.V., Goff S.P. Riplet Binds the Zinc Finger Antiviral Protein (ZAP) and Augments ZAP-Mediated Restriction of HIV-1. J. Virol. 2022;96:e0052622. doi: 10.1128/jvi.00526-22. PubMed DOI PMC

Kato K., Ahmad S., Zhu Z., Young J.M., Mu X., Park S., Malik H.S., Hur S. Structural Analysis of RIG-I-like Receptors Reveals Ancient Rules of Engagement between Diverse RNA Helicases and TRIM Ubiquitin Ligases. Mol. Cell. 2021;81:599–613.e8. doi: 10.1016/j.molcel.2020.11.047. PubMed DOI PMC

Dascher C.C., Brenner M.B. Evolutionary Constraints on CD1 Structure: Insights from Comparative Genomic Analysis. Trends Immunol. 2003;24:412–418. doi: 10.1016/S1471-4906(03)00179-0. PubMed DOI

Dias Junior A.G., Sampaio N.G., Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019;27:75–85. doi: 10.1016/j.tim.2018.08.007. PubMed DOI PMC

Lei Y., Fei P., Song B., Shi W., Luo C., Luo D., Li D., Chen W., Zheng J. A Loosened Gating Mechanism of RIG-I Leads to Autoimmune Disorders. Nucleic Acids Res. 2022;50:5850–5863. doi: 10.1093/nar/gkac361. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Understanding the evolution of immune genes in jawed vertebrates

. 2023 Jun ; 36 (6) : 847-873. [epub] 20230531

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace