Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36680044
PubMed Central
PMC9861763
DOI
10.3390/v15010003
PII: v15010003
Knihovny.cz E-zdroje
- Klíčová slova
- avian genome, gene loss, innate immunity, viral sensors,
- MeSH
- antivirové látky MeSH
- DEAD box protein 58 genetika metabolismus MeSH
- přirozená imunita MeSH
- ptáci virologie MeSH
- RNA-helikasy MeSH
- RNA-viry * fyziologie MeSH
- RNA * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- DEAD box protein 58 MeSH
- RNA-helikasy MeSH
- RNA * MeSH
Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are key RNA virus sensors belonging to the RIG-I-like receptor (RLR) family. The activation of the RLR inflammasome leads to the establishment of antiviral state, mainly through interferon-mediated signaling. The evolutionary dynamics of RLRs has been studied mainly in mammals, where rare cases of RLR gene losses were described. By in silico screening of avian genomes, we previously described two independent disruptions of MDA5 in two bird orders. Here, we extend this analysis to approximately 150 avian genomes and report 16 independent evolutionary events of RIG-I inactivation. Interestingly, in almost all cases, these inactivations are coupled with genetic disruptions of RIPLET/RNF135, an ubiquitin ligase RIG-I regulator. Complete absence of any detectable RIG-I sequences is unique to several galliform species, including the domestic chicken (Gallus gallus). We further aimed to determine compensatory evolution of MDA5 in RIG-I-deficient species. While we were unable to show any specific global pattern of adaptive evolution in RIG-I-deficient species, in galliforms, the analyses of positive selection and surface charge distribution support the hypothesis of some compensatory evolution in MDA5 after RIG-I loss. This work highlights the dynamic nature of evolution in bird RNA virus sensors.
Department of Zoology Faculty of Science Charles University 12843 Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Rehwinkel J., Gack M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020;20:537–551. doi: 10.1038/s41577-020-0288-3. PubMed DOI PMC
Palm N.W., Medzhitov R. Pattern Recognition Receptors and Control of Adaptive Immunity. Immunol. Rev. 2009;227:221–233. doi: 10.1111/j.1600-065X.2008.00731.x. PubMed DOI
Magor K.E. Evolution of RNA Sensing Receptors in Birds. Immunogenetics. 2022;74:149–165. doi: 10.1007/s00251-021-01238-1. PubMed DOI PMC
Kawai T., Akira S. The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. Int. Immunol. 2009;21:317–337. doi: 10.1093/intimm/dxp017. PubMed DOI PMC
Pålsson-McDermott E.M., O’Neill L.A.J. Building an Immune System from Nine Domains. Biochem. Soc. Trans. 2007;35:1437–1444. doi: 10.1042/BST0351437. PubMed DOI
Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA Helicase RIG-I Has an Essential Function in Double-Stranded RNA-Induced Innate Antiviral Responses. Nat. Immunol. 2004;5:730–737. doi: 10.1038/ni1087. PubMed DOI
Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., Goodbourn S., Randall R.E. The V Proteins of Paramyxoviruses Bind the IFN-Inducible RNA Helicase, Mda-5, and Inhibit Its Activation of the IFN-Beta Promoter. Proc. Natl. Acad. Sci. USA. 2004;101:17264–17269. doi: 10.1073/pnas.0407639101. PubMed DOI PMC
Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y.-M., Gale M., Jr., Akira S., et al. Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. J. Immunol. 2005;175:2851–2858. doi: 10.4049/jimmunol.175.5.2851. PubMed DOI
Rodriguez K.R., Bruns A.M., Horvath C.M. MDA5 and LGP2: Accomplices and Antagonists of Antiviral Signal Transduction. J. Virol. 2014;88:8194–8200. doi: 10.1128/JVI.00640-14. PubMed DOI PMC
Yu M., Levine S.J. Toll-like Receptor, RIG-I-like Receptors and the NLRP3 Inflammasome: Key Modulators of Innate Immune Responses to Double-Stranded RNA Viruses. Cytokine Growth Factor Rev. 2011;22:63–72. doi: 10.1016/j.cytogfr.2011.02.001. PubMed DOI PMC
Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nature. 2006;441:101–105. doi: 10.1038/nature04734. PubMed DOI
Brisse M., Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019;10:1586. doi: 10.3389/fimmu.2019.01586. PubMed DOI PMC
Hornung V., Ellegast J., Kim S., Brzózka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.-K., Schlee M., et al. 5′-Triphosphate RNA Is the Ligand for RIG-I. Science. 2006;314:994–997. doi: 10.1126/science.1132505. PubMed DOI
Pichlmair A., Schulz O., Tan C.P., Näslund T.I., Liljeström P., Weber F., Reis e Sousa C. RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5′-Phosphates. Science. 2006;314:997–1001. doi: 10.1126/science.1132998. PubMed DOI
Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., Schuberth C., Van der Veen A.G., Fujimura T., Rehwinkel J., et al. Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5′-Diphosphates. Nature. 2014;514:372–375. doi: 10.1038/nature13590. PubMed DOI PMC
Schuberth-Wagner C., Ludwig J., Bruder A.K., Herzner A.-M., Zillinger T., Goldeck M., Schmidt T., Schmid-Burgk J.L., Kerber R., Wolter S., et al. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity. 2015;43:41–51. doi: 10.1016/j.immuni.2015.06.015. PubMed DOI PMC
Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. Length-Dependent Recognition of Double-Stranded Ribonucleic Acids by Retinoic Acid-Inducible Gene-I and Melanoma Differentiation-Associated Gene 5. J. Exp. Med. 2008;205:1601–1610. doi: 10.1084/jem.20080091. PubMed DOI PMC
Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S. Structural Basis for dsRNA Recognition, Filament Formation, and Antiviral Signal Activation by MDA5. Cell. 2013;152:276–289. doi: 10.1016/j.cell.2012.11.048. PubMed DOI
Chiang C., Gack M.U. Post-Translational Control of Intracellular Pathogen Sensing Pathways. Trends Immunol. 2017;38:39–52. doi: 10.1016/j.it.2016.10.008. PubMed DOI PMC
Lemos de Matos A., McFadden G., Esteves P.J. Positive Evolutionary Selection on the RIG-I-like Receptor Genes in Mammals. PLoS ONE. 2013;8:e81864. doi: 10.1371/journal.pone.0081864. PubMed DOI PMC
Cagliani R., Forni D., Tresoldi C., Pozzoli U., Filippi G., Rainone V., De Gioia L., Clerici M., Sironi M. RIG-I-like Receptors Evolved Adaptively in Mammals, with Parallel Evolution at LGP2 and RIG-I. J. Mol. Biol. 2014;426:1351–1365. doi: 10.1016/j.jmb.2013.10.040. PubMed DOI
Albalat R., Cañestro C. Evolution by Gene Loss. Nat. Rev. Genet. 2016;17:379–391. doi: 10.1038/nrg.2016.39. PubMed DOI
Guijarro-Clarke C., Holland P.W.H., Paps J. Widespread Patterns of Gene Loss in the Evolution of the Animal Kingdom. Nat. Ecol. Evol. 2020;4:519–523. doi: 10.1038/s41559-020-1129-2. PubMed DOI
Xu L., Yu D., Fan Y., Peng L., Wu Y., Yao Y.-G. Loss of RIG-I Leads to a Functional Replacement with MDA5 in the Chinese Tree Shrew. Proc. Natl. Acad. Sci. USA. 2016;113:10950–10955. doi: 10.1073/pnas.1604939113. PubMed DOI PMC
Fischer H., Tschachler E., Eckhart L. Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Front. Immunol. 2020;11:939. doi: 10.3389/fimmu.2020.00939. PubMed DOI PMC
Sharma V., Hecker N., Walther F., Stuckas H., Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol. Biol. Evol. 2020;37:1847–1854. doi: 10.1093/molbev/msaa058. PubMed DOI
Velová H., Gutowska-Ding M.W., Burt D.W., Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol. Biol. Evol. 2018;35:2170–2184. doi: 10.1093/molbev/msy119. PubMed DOI PMC
Bainová H., Králová T., Bryjová A., Albrecht T., Bryja J., Vinkler M. First Evidence of Independent Pseudogenization of Toll-like Receptor 5 in Passerine Birds. Dev. Comp. Immunol. 2014;45:151–155. doi: 10.1016/j.dci.2014.02.010. PubMed DOI
Zou J., Chang M., Nie P., Secombes C.J. Origin and Evolution of the RIG-I like RNA Helicase Gene Family. BMC Evol. Biol. 2009;9:85. doi: 10.1186/1471-2148-9-85. PubMed DOI PMC
Barber M.R.W., Aldridge J.R., Jr., Webster R.G., Magor K.E. Association of RIG-I with Innate Immunity of Ducks to Influenza. Proc. Natl. Acad. Sci. USA. 2010;107:5913–5918. doi: 10.1073/pnas.1001755107. PubMed DOI PMC
Zheng W., Satta Y. Functional Evolution of Avian RIG-I-like Receptors. Genes. 2018;9:456. doi: 10.3390/genes9090456. PubMed DOI PMC
Krchlíková V., Hron T., Těšický M., Li T., Hejnar J., Vinkler M., Elleder D. Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective. Viruses. 2021;13:2131. doi: 10.3390/v13112131. PubMed DOI PMC
Fiddaman S.R., Vinkler M., Spiro S.G., Levy H., Emerling C.A., Boyd A.C., Dimopoulos E.A., Vianna J.A., Cole T.L., Pan H., et al. Adaptation and Cryptic Pseudogenization in Penguin Toll-like Receptors. Mol. Biol. Evol. 2022;39:msab354. doi: 10.1093/molbev/msab354. PubMed DOI PMC
Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The Global Diversity of Birds in Space and Time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Jetz W., Thomas G.H., Joy J.B., Redding D.W., Hartmann K., Mooers A.O. Global Distribution and Conservation of Evolutionary Distinctness in Birds. Curr. Biol. 2014;24:919–930. doi: 10.1016/j.cub.2014.03.011. PubMed DOI
Katoh K., Kuma K.-I., Toh H., Miyata T. MAFFT Version 5: Improvement in Accuracy of Multiple Sequence Alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Zhang J., Nielsen R., Yang Z. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Mol. Biol. Evol. 2005;22:2472–2479. doi: 10.1093/molbev/msi237. PubMed DOI
Kosakovsky Pond S.L., Frost S.D.W. Not so Different after All: A Comparison of Methods for Detecting Amino Acid Sites under Selection. Mol. Biol. Evol. 2005;22:1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI
Murrell B., Wertheim J.O., Moola S., Weighill T., Scheffler K., Kosakovsky Pond S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC
Zamyatnin A.A. Amino Acid, Peptide, and Protein Volume in Solution. Annu. Rev. Biophys. Bioeng. 1984;13:145–165. doi: 10.1146/annurev.bb.13.060184.001045. PubMed DOI
Uchikawa E., Lethier M., Malet H., Brunel J., Gerlier D., Cusack S. Structural Analysis of dsRNA Binding to Anti-Viral Pattern Recognition Receptors LGP2 and MDA5. Mol. Cell. 2016;62:586–602. doi: 10.1016/j.molcel.2016.04.021. PubMed DOI PMC
Ren J., Wen L., Gao X., Jin C., Xue Y., Yao X. DOG 1.0: Illustrator of Protein Domain Structures. Cell Res. 2009;19:271–273. doi: 10.1038/cr.2009.6. PubMed DOI
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., et al. Protein Complex Prediction with AlphaFold-Multimer. BioRxiv. 2022 doi: 10.1101/2021.10.04.463034. DOI
McGuffin L.J., Aldowsari F.M.F., Alharbi S.M.A., Adiyaman R. ModFOLD8: Accurate Global and Local Quality Estimates for 3D Protein Models. Nucleic Acids Res. 2021;49:W425–W430. doi: 10.1093/nar/gkab321. PubMed DOI PMC
Těšický M., Velová H., Novotný M., Kreisinger J., Beneš V., Vinkler M. Positive Selection and Convergent Evolution Shape Molecular Phenotypic Traits of Innate Immunity Receptors in Tits (Paridae) Mol. Ecol. 2020;29:3056–3070. doi: 10.1111/mec.15547. PubMed DOI
Donald J.E., Kulp D.W., DeGrado W.F. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins Struct. Funct. Bioinform. 2011;79:898–915. doi: 10.1002/prot.22927. PubMed DOI PMC
Onofrio A., Parisi G., Punzi G., Todisco S., Di Noia M.A., Bossis F., Turi A., De Grassi A., Pierri C.L. Distance-Dependent Hydrophobic-Hydrophobic Contacts in Protein Folding Simulations. Phys. Chem. Chem. Phys. 2014;16:18907–18917. doi: 10.1039/C4CP01131G. PubMed DOI
Tien M.Z., Meyer A.G., Sydykova D.K., Spielman S.J., Wilke C.O. Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS ONE. 2013;8:e80635. doi: 10.1371/journal.pone.0080635. PubMed DOI PMC
Richter S., Wenzel A., Stein M., Gabdoulline R.R., Wade R.C. webPIPSA: A Web Server for the Comparison of Protein Interaction Properties. Nucleic Acids Res. 2008;36:W276–W280. doi: 10.1093/nar/gkn181. PubMed DOI PMC
Suzuki R., Shimodaira H. Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI
Magor K.E., Miranzo Navarro D., Barber M.R.W., Petkau K., Fleming-Canepa X., Blyth G.A.D., Blaine A.H. Defense Genes Missing from the Flight Division. Dev. Comp. Immunol. 2013;41:377–388. doi: 10.1016/j.dci.2013.04.010. PubMed DOI PMC
Hayashi T., Watanabe C., Suzuki Y., Tanikawa T., Uchida Y., Saito T. Chicken MDA5 Senses Short Double-Stranded RNA with Implications for Antiviral Response against Avian Influenza Viruses in Chicken. J. Innate Immun. 2014;6:58–71. doi: 10.1159/000351583. PubMed DOI PMC
Xu L., Yu D., Fan Y., Liu Y.-P., Yao Y.-G. Evolutionary Selection on MDA5 and LGP2 in the Chicken Preserves Antiviral Competence in the Absence of RIG-I. J. Genet. Genom. 2019;46:499–503. doi: 10.1016/j.jgg.2019.10.001. PubMed DOI
Karpala A.J., Stewart C., McKay J., Lowenthal J.W., Bean A.G.D. Characterization of Chicken Mda5 Activity: Regulation of IFN-β in the Absence of RIG-I Functionality. J. Immunol. 2011;186:5397–5405. doi: 10.4049/jimmunol.1003712. PubMed DOI
Sirén J., Imaizumi T., Sarkar D., Pietilä T., Noah D.L., Lin R., Hiscott J., Krug R.M., Fisher P.B., Julkunen I., et al. Retinoic Acid Inducible Gene-I and Mda-5 Are Involved in Influenza A Virus-Induced Expression of Antiviral Cytokines. Microbes Infect. 2006;8:2013–2020. doi: 10.1016/j.micinf.2006.02.028. PubMed DOI
Lee S.B., Park Y.H., Chungu K., Woo S.J., Han S.T., Choi H.J., Rengaraj D., Han J.Y. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front. Immunol. 2020;11:678. doi: 10.3389/fimmu.2020.00678. PubMed DOI PMC
Barber M.R.W., Aldridge J.R., Jr., Fleming-Canepa X., Wang Y.-D., Webster R.G., Magor K.E. Identification of Avian RIG-I Responsive Genes during Influenza Infection. Mol. Immunol. 2013;54:89–97. doi: 10.1016/j.molimm.2012.10.038. PubMed DOI PMC
Hron T., Pajer P., Pačes J., Bartůněk P., Elleder D. Hidden Genes in Birds. Genome Biol. 2015;16:164. doi: 10.1186/s13059-015-0724-z. PubMed DOI PMC
Kumar S., Suleski M., Craig J.M., Kasprowicz A.E., Sanderford M., Li M., Stecher G., Hedges S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022;39:msac174. doi: 10.1093/molbev/msac174. PubMed DOI PMC
Oshiumi H., Matsumoto M., Hatakeyama S., Seya T. Riplet/RNF135, a RING Finger Protein, Ubiquitinates RIG-I to Promote Interferon-Beta Induction during the Early Phase of Viral Infection. J. Biol. Chem. 2009;284:807–817. doi: 10.1074/jbc.M804259200. PubMed DOI
Hayman T.J., Hsu A.C., Kolesnik T.B., Dagley L.F., Willemsen J., Tate M.D., Baker P.J., Kershaw N.J., Kedzierski L., Webb A.I., et al. RIPLET, and Not TRIM25, Is Required for Endogenous RIG-I-Dependent Antiviral Responses. Immunol. Cell Biol. 2019;97:840–852. doi: 10.1111/imcb.12284. PubMed DOI
Buckmaster M.V., Goff S.P. Riplet Binds the Zinc Finger Antiviral Protein (ZAP) and Augments ZAP-Mediated Restriction of HIV-1. J. Virol. 2022;96:e0052622. doi: 10.1128/jvi.00526-22. PubMed DOI PMC
Kato K., Ahmad S., Zhu Z., Young J.M., Mu X., Park S., Malik H.S., Hur S. Structural Analysis of RIG-I-like Receptors Reveals Ancient Rules of Engagement between Diverse RNA Helicases and TRIM Ubiquitin Ligases. Mol. Cell. 2021;81:599–613.e8. doi: 10.1016/j.molcel.2020.11.047. PubMed DOI PMC
Dascher C.C., Brenner M.B. Evolutionary Constraints on CD1 Structure: Insights from Comparative Genomic Analysis. Trends Immunol. 2003;24:412–418. doi: 10.1016/S1471-4906(03)00179-0. PubMed DOI
Dias Junior A.G., Sampaio N.G., Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019;27:75–85. doi: 10.1016/j.tim.2018.08.007. PubMed DOI PMC
Lei Y., Fei P., Song B., Shi W., Luo C., Luo D., Li D., Chen W., Zheng J. A Loosened Gating Mechanism of RIG-I Leads to Autoimmune Disorders. Nucleic Acids Res. 2022;50:5850–5863. doi: 10.1093/nar/gkac361. PubMed DOI PMC
Understanding the evolution of immune genes in jawed vertebrates