Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
        Grantová podpora
      Wellcome Trust    - United Kingdom
      
          
              BB/M011224/1 
          
      Biotechnology and Biological Sciences Research Council    - United Kingdom
      
          
              BB/N023803/1 
          
      Biotechnology and Biological Sciences Research Council    - United Kingdom
      
          
              BB/K004468/1 
          
      Biotechnology and Biological Sciences Research Council    - United Kingdom
      
          
              210119/Z/18/Z 
          
      Wellcome Trust    - United Kingdom
      
      
    PubMed
          
           34897511
           
          
          
    PubMed Central
          
           PMC8788240
           
          
          
    DOI
          
           10.1093/molbev/msab354
           
          
          
      PII:  6460345
  
    Knihovny.cz E-zdroje
    
  
              
      
- Klíčová slova
- Toll-like receptors, avian immunology, host–pathogen interaction, immunogenetics, pseudogenization, wildlife disease,
- MeSH
- molekulární evoluce MeSH
- selekce (genetika) MeSH
- Spheniscidae * genetika MeSH
- toll-like receptory genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- toll-like receptory MeSH
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
BGI Shenzhen Beishan Industrial Zone Yantian District Shenzhen China
Biology Department Reedley College Reedley CA USA
Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Zoology University of Oxford Oxford United Kingdom
Jenner Institute University of Oxford Oxford United Kingdom
Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
Wildlife Health Services Zoological Society of London London United Kingdom
Zobrazit více v PubMed
Alcaide M, Edwards SV.. 2011. Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol. 28(5):1703–1715. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. PubMed
Andersen-Nissen E, Smith KD, Strobe KL, Barrett SLR, Cookson BT, Logan SM, Aderem A.. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A. 102(26):9247–9252. PubMed PMC
Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA.. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 25(2):187–191. PubMed
Areal H, Abrantes J, Esteves PJ.. 2011. Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol. 11:368. PubMed PMC
AZA Penguin Taxon Advisory Group. 2014. Penguin (Spheniscidae) care manual. Silver Spring (MD): Association of Zoos and Aquariums.
Bainova H, Kralova T, Bryjova A, Albrecht T, Bryja J, Vinkler M.. 2014. First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds. Dev Comp Immunol. 45(1):151–155. PubMed
Balakirev ES, Ayala FJ.. 1996. Is esterase-P encoded by a cryptic pseudogene in Drosophila melanogaster? Genetics 144(4):1511–1518. PubMed PMC
Beernaert LA, Pasmans F, Van Waeyenberghe L, Haesebrouck F, Martel A.. 2010. Aspergillus infections in birds: a review. Avian Pathol. 39(5):325–331. PubMed
Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S.. 2015. msa: an R package for multiple sequence alignment. Bioinformatics 31(24):3997–3999. PubMed
Boyd A, Philbin VJ, Smith AL.. 2007. Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochem Soc Trans. 35(Pt 6):1504–1507. PubMed
Boyd AC, Peroval MY, Hammond JA, Prickett MD, Young JR, Smith AL.. 2012. TLR15 Is unique to avian and reptilian lineages and recognizes a yeast-derived agonist. J Immunol. 189(10):4930–4938. PubMed
Browning BL, Zhou Y, Browning SR.. 2018. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 103(3):338–348. PubMed PMC
Browning SR, Browning BL.. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 81(5):1084–1097. PubMed PMC
Brownlie R, Allan B, 2011. Avian toll-like receptors 2001. Cell Tissue Res. 343:121–130. PubMed
Carrasco L, Lima JS, Halfen DC, Salguero FJ, Sánchez-Cordon P, Becker G.. 2001. Systemic aspergillosis in an oiled magallanic penguin (Spheniscus magellanicus). J Vet Med B Infect Dis Vet Public Health 48:551–554. PubMed
Choi Y, Chan AP.. 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747. PubMed PMC
Clements J, Schulenberg T, Iliff M, Billerman S, Fredericks T, Sullivan B, Wood C.. 2019. The eBird/Clements Checklist of Birds of the World: v2019. Available from: https://www.birds.cornell.edu/clementschecklist/download/.
Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR.. 2020. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370(6519):eabb1702. PubMed PMC
Cole TL, Dutoit L, Dussex N, Hart T, Alexander A, Younger JL, Clucas GV, Frugone MJ, Cherel Y, Cuthbert R, et al.2019a. Receding ice drove parallel expansions in Southern Ocean penguins. Proc Natl Acad Sci U S A. 116(52):26690–26696. PubMed PMC
Cole TL, Ksepka DT, Mitchell KJ, Tennyson AJD, Thomas DB, Pan H, Zhang G, Rawlence NJ, Wood JR, Bover P, et al.2019. b. Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation. Mol Biol Evol. 36(4):784–797. PubMed
Cumming GS, Guegan JF.. 2006. Food webs and disease: is pathogen diversity limited by vector diversity? Ecohealth 3(3):163–170.
Cummings SM, McMullan M, Joyce DA, van Oosterhout C.. 2010. Solutions for PCR, cloning and sequencing errors in population genetic analysis. Conserv Genet. 11(3):1095–1097.
Dalton DL, Vermaak E, Roelofse M, Kotze A.. 2016. Diversity in the toll-like receptor genes of the African Penguin (Spheniscus demersus). PLoS One 11(10):e0163331. PubMed PMC
de Zoete MR, Bouwman LI, Keestra AM, van Putten JPM.. 2011. Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci U S A. 108(12):4968–4973. PubMed PMC
Delport W, Poon AFY, Frost SDW, Pond SLK.. 2010. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457. PubMed PMC
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al.2011. A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. Nat Genet. 43(5):491–498. PubMed PMC
Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L.. 2007. Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 61(9):2154–2164. PubMed
Dunnett CW. 1955. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 50(272):1096–1121.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797. PubMed PMC
Ferwerda B, McCall MBB, Alonso S, Mouktaroudi M, Giamarellos-Bourboulis EJ, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, et al.2007. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A. 104(42):16645–16650. PubMed PMC
Flach EJ, Stevenson MF, Henderson GM.. 1990. Aspergillosis in Gentoo penguins (Pygoscelis papua) at Edinburgh Zoo, 1964 to 1988. Vet Rec. 126:81–85. PubMed
Fornůsková A, Vinkler M, Pagès M, Galan M, Jousselin E, Cerqueira F, Morand S, Charbonnel N, Bryja J, Cosson J-F.. 2013. Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol. 13:194. PubMed PMC
Frugone MJ, López ME, Segovia NI, Cole TL, Lowther A, Pistorius P, Dantas GPM, Petry MV, Bonadonna F, Trathan P, et al.2019. More than the eye can see: genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol Phylogenet Evol. 139:106563. PubMed
Frugone MJ, Lowther A, Noll D, Ramos B, Pistorius P, Dantas GPM, Petry MV, Bonadonna F, Steinfurth A, Polanowski A, et al.2018. Contrasting phylogeographic pattern among Eudyptes penguins around the Southern Ocean. Sci Rep. 8(1):17481. PubMed PMC
Garate JA, Oostenbrink C.. 2013. Lipid A from lipopolysaccharide recognition: structure, dynamics and cooperativity by molecular dynamics simulations. Proteins 81(4):658–674. PubMed
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO.. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–U341. PubMed
Graczyk TK, Cockrem JF.. 1995. Aspergillus spp seropositivity in New Zealand penguins. Mycopathologia 131(3):179–184. PubMed
Grueber CE, Wallis GP, Jamieson IG.. 2014. Episodic positive selection in the evolution of avian Toll-like receptor innate immunity genes. PLoS One 9(3):e89632. PubMed PMC
Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, et al.2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med. 198(10):1563–1572. PubMed PMC
Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’Farrelly C.. 2006. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun. 74(3):1692–1698. PubMed PMC
Hocken AG. 2000. Cause of death in blue penguins (Eudyptula m. minor) in North Otago, New Zealand. N Z J Zool. 27(4):305–309.
Huang Y, Temperley ND, Ren L, Smith J, Li N, Burt DW.. 2011. Molecular evolution of the vertebrate TLR1 gene family–a complex history of gene duplication, gene conversion, positive selection and co-evolution. BMC Evol Biol. 11:149. PubMed PMC
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee HY, Lee JO.. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082. PubMed
Kall L, Krogh A, Sonnhammer ELL.. 2004. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 338(5):1027–1036. PubMed
Kall L, Krogh A, Sonnhammer ELL.. 2007. Advantages of combined transmembrane topology and signal peptide prediction - the Phobius web server. Nucleic Acids Res. 35(Web Server issue):W429–W432. PubMed PMC
Kamiya T, O’Dwyer K, Nakagawa S, Poulin R.. 2014. Host diversity drives parasite diversity: metaanalytical insights into patterns and causal mechanisms. Ecography 37(7):689–697.
Keestra AM, de Zoete MR, Bouwman LI, van Putten JPM.. 2010. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol. 185(1):460–467. PubMed
Khan ZU, Pal M, Paliwal DK, Damodaran VN.. 1977. Aspergillosis in imported penguins. Sabouraudia 15(1):43–45. PubMed
Krol L, Moore RP, Mutlow AG, Brady SM, Dorsa D.. 2020. A retrospective analysis of mortality in captive Magellanic penguins (Spheniscus magellanicus) in the United States, 2008-2018. Zoo Biol. 39(6):405–410. PubMed
Králová T, Albrecht T, Bryja J, Hořák D, Johnsen A, Lifjeld JT, Novotný M, Sedláček O, Velová H, Vinkler M.. 2018. Signatures of diversifying selection and convergence acting on passerine Toll-like receptor 4 in an evolutionary context. Mol Ecol. 27(13):2871–2883. PubMed
Levy H, Fiddaman SR, Vianna JA, Noll D, Clucas GV, Sidhu JKH, Polito MJ, Bost CA, Phillips RA, Crofts S, et al.2020. Evidence of pathogen-induced immunogenetic selection across the large geographic range of a wild seabird. Mol Biol Evol. 37(6):1708–1726. PubMed PMC
Li C, Zhang Y, Li J, Kong L, Hu H, Pan H, Xu L, Deng Y, Li Q, Jin L, et al.2014. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 3(1):27. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. PubMed PMC
Li WH, Gojobori T, Nei M.. 1981. Pseudogenes as a paradigm of neutral evolution. Nature 292(5820):237–239. PubMed
Liu GS, Zhang HX, Zhao C, Zhang HH.. 2020. Evolutionary history of the Toll-like receptor gene family across vertebrates. Genome Biol Evol. 12(1):3615–3634. PubMed PMC
Medzhitov R, Preston-Hurlburt P, Janeway CA.. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397. PubMed
Mikami T, Miyashita H, Takatsuka S, Kuroki Y, Matsushima N.. 2012. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains. Gene 503(2):235–243. PubMed
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, Scheffler K.. 2013. FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol. 30(5):1196–1205. PubMed PMC
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK.. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8(7):e1002764. PubMed PMC
Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A.. 2008. Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60(12):727–735. PubMed
Ng PC, Henikoff S.. 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13):3812–3814. PubMed PMC
O'Connor EA, Hasselquist D, Nilsson J, Westerdahl H, Cornwallis CK.. 2020. Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proc Biol Sci. 287(1919):20192675. PubMed PMC
Obendorf DL, McColl K.. 1980. Mortality in little penguins (Eudyptula minor) along the coast of Victoria, Australia. J Wildl Dis. 16(2):251–259. PubMed
Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K, Shimizu T.. 2012. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem. 287(48):40611–40617. PubMed PMC
Oven I, Resman Rus K, Dušanić D, Benčina D, Keeler CL, Narat M.. 2013. Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Vet Res. 44:99. PubMed PMC
Pan HL, Cole TL, Bi XP, Fang MQ, Zhou CR, Yang ZT, Ksepka DT, Hart T, Bouzat JL, Argilla LS, et al.2019. High-coverage genomes to elucidate the evolution of penguins. Gigascience 8(9):giz117. PubMed PMC
Paramo T, Piggot TJ, Bryant CE, Bond PJ.. 2013. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor. J Biol Chem. 288(51):36215–36225. PubMed PMC
Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O.. 2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. PubMed
Pond SLK, Frost SDW.. 2005. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21(10):2531–2533. PubMed
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, et al.2018. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 201178. Available from: 10.1101/201178. DOI
Poulin R. 2014. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol. 44(9):581–589. PubMed
Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D.. 1999. Endotoxin tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med. 189(4):615–625. PubMed PMC
Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A.. 2005. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A. 102(27):9577–9582. PubMed PMC
Ropert-Coudert Y, Hindell MA, Phillips RA, Jean-Benoit C, Trudelle L, Raymond B, et al.2014. Biogeographic patterns of birds and mammals. In: De Broyer C, Koubbi P, Griffiths H, Raymond B, d’Udekem d’Acoz C, Van de Putte A, Danis B, David B, Grant S, Gutt J, editors. Biogeographic atlas of the Southern Ocean. Cambridge: The Scientific Committee on Antarctic Research. p. 364–387.
Roy A, Kucukural A, Zhang Y.. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 5(4):725–738. PubMed PMC
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A.. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 34(12):3299–3302. PubMed
Sallaberry-Pincheira N, González-Acuña D, Padilla P, Dantas GPM, Luna-Jorquera G, Frere E, Valdés-Velásquez A, Vianna JA.. 2016. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins. Ecol Evol. 6(20):7498–7510. PubMed PMC
Scior T, Lozano-Aponte J, Figueroa-Vazquez V, Yunes-Rojas JA, Zähringer U, Alexander C.. 2013. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system. Comput Struct Biotechnol J. 7:e201305003. PubMed PMC
Sharma V, Walther F, Hecker N, Stuckas H, Hiller M.. 2020. Convergent losses of TLR5 suggest altered extracellular flagellin detection in four mammalian lineages. Mol Biol Evol. 37(7):1847–1854. PubMed
Shen T, Xu SX, Wang XH, Yu WH, Zhou KY, Yang G.. 2012. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Biol. 12:39. PubMed PMC
Shultz AJ, Sackton TB.. 2019. Immune genes are hotspots of shared positive selection across birds and mammals. Elife 8:e41815. PubMed PMC
Świderská Z, Šmídová A, Buchtová L, Bryjová A, Fabiánová A, Munclinger P, Vinkler M.. 2018. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep. 8(1):17878. PubMed PMC
Takeda K, Kaisho T, Akira S.. 2003. Toll-like receptors. Annu Rev Immunol. 21:335–376. PubMed
Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW.. 2008. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62. PubMed PMC
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M.. 2020. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol. 29(16):3056–3070. PubMed
Uhart M, Vanstreels RET, Gallo L, Cook RA, Karesh WB.. 2020. Serological survey for selection infectious agents in wild magellanic penguins (Spheniscus magellanicus) in Argentina, 1994-2008. J Wildl Dis. 56(1):66–81. PubMed
Van der Auwera GA, Carneiro MO Hartl C, Poplin R, Angel Levy-Moonshine DG, Jordan A, Shakir T, Roazen K, Thibault D. J.. 2013. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.11–11.10.33. PubMed PMC
Velova H, Gutowska-Ding MW, Burt DW, Vinkler M.. 2018. Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol Biol Evol. 35(9):2170–2184. PubMed PMC
Vianna JA, Fernandes FAN, Frugone MJ, Figueiró HV, Pertierra LR, Noll D, Bi K, Wang-Claypool CY, Lowther A, Parker P, et al.2020. Genome-wide analyses reveal drivers of penguin diversification. Proc Natl Acad Sci U S A. 117(36):22303–22310. PubMed PMC
Vinkler M, Bainova H, Bryja J.. 2014. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Select Evol. 46(1):72. PubMed PMC
Vinkler M, Bryjova A, Albrecht T, Bryja J.. 2009. Identification of the first Toll-like receptor gene in passerine birds: TLR4 orthologue in zebra finch (Taeniopygia guttata). Tissue Antigens 74(1):32–41. PubMed
Voogdt CGP, Merchant ME, Wagenaar JA, van Putten JPM.. 2018. Evolutionary regression and species-specific codon usage of TLR15. Front Immunol. 9:2626. PubMed PMC
Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Pond SLK.. 2018. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 35(3):773–777. PubMed PMC
Wlasiuk G, Nachman MW.. 2010. Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol. 27(9):2172–2186. PubMed PMC
Wolfe AD, dePamphilis CW.. 1998. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol. 15(10):1243–1258. PubMed
Xavier MO, Soares MP, Meinerz ARM, Nobre MO, Osorio LG, da Silva RP, Meireles MCA.. 2007. Aspergillosis: a limiting factor during recovery of captive Magellanic penguins. Braz J Microbiol. 38(3):480–484.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed
Yang ZH. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13(5):555–556. PubMed
Yang ZH, Wong WSW, Nielsen R.. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol. 22(4):1107–1118. PubMed
Yeh DW, Liu YL, Lo YC, Yuh CH, Yu GY, Lo JF, Luo YP, Xiang R, Chuang TH.. 2013. Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish. Proc Natl Acad Sci U S A. 110(51):20711–20716. PubMed PMC
Yoon SI, Kurnasov O, Natarajan V, Hong MS, Gudkov AV, Osterman AL, Wilson IA.. 2012. Structural Basis of TLR5-Flagellin Recognition and Signaling. Science. 335(6070):859–864. PubMed PMC
Zhang G, Rahbek C, Graves GR, Lei F, Jarvis ED, Gilbert MT.. 2015. Genomics: bird sequencing project takes off. Nature. 522(7554):34. PubMed
Zhang JZ. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution. 18(6):292–298.
Zhang ZK, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, et al.2016. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748. PubMed
Understanding the evolution of immune genes in jawed vertebrates
Dynamic Evolution of Avian RNA Virus Sensors: Repeated Loss of RIG-I and RIPLET
Selection Balancing at Innate Immune Genes: Adaptive Polymorphism Maintenance in Toll-Like Receptors
