Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective

. 2021 Oct 22 ; 13 (11) : . [epub] 20211022

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834938

Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.

Zobrazit více v PubMed

Majzoub K., Wrensch F., Baumert T.F. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses. 2019;11:758. doi: 10.3390/v11080758. PubMed DOI PMC

Daugherty M.D., Malik H.S. Rules of Engagement: Molecular Insights from Host-Virus Arms Races. Annu. Rev. Genet. 2012;46:677–700. doi: 10.1146/annurev-genet-110711-155522. PubMed DOI

Albalat R., Cañestro C. Evolution by gene loss. Nat. Rev. Genet. 2016;17:379–391. doi: 10.1038/nrg.2016.39. PubMed DOI

Guijarro-Clarke C., Holland P.W.H., Paps J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat. Ecol. Evol. 2020;4:519–523. doi: 10.1038/s41559-020-1129-2. PubMed DOI

Rehwinkel J., Gack M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020;20:537–551. doi: 10.1038/s41577-020-0288-3. PubMed DOI PMC

Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004;5:730–737. doi: 10.1038/ni1087. PubMed DOI

Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., Goodbourn S., Randall R.E. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN- promoter. Proc. Natl. Acad. Sci. USA. 2004;101:17264–17269. doi: 10.1073/pnas.0407639101. PubMed DOI PMC

Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y.M., Gale M., Akira S., et al. Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. J. Immunol. 2005;175:2851–2858. doi: 10.4049/jimmunol.175.5.2851. PubMed DOI

Rodriguez K.R., Bruns A.M., Horvath C.M. MDA5 and LGP2: Accomplices and Antagonists of Antiviral Signal Transduction. J. Virol. 2014;88:8194–8200. doi: 10.1128/JVI.00640-14. PubMed DOI PMC

Van der Veen A.G., Maillard P.V., Schmidt J.M., Lee S.A., Deddouche-Grass S., Borg A., Kjær S., Snijders A.P., Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 2018;37:e97479. PubMed PMC

Minamitani T., Iwakiri D., Takada K. Adenovirus Virus-Associated RNAs Induce Type I Interferon Expression through a RIG-I-Mediated Pathway. J. Virol. 2011;85:4035–4040. doi: 10.1128/JVI.02160-10. PubMed DOI PMC

Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105. doi: 10.1038/nature04734. PubMed DOI

Brisse M., Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 2019;10:1586. doi: 10.3389/fimmu.2019.01586. PubMed DOI PMC

Cagliani R., Forni D., Tresoldi C., Pozzoli U., Filippi G., Rainone V., De Gioia L., Clerici M., Sironi M. RIG-I-Like Receptors Evolved Adaptively in Mammals, with Parallel Evolution at LGP2 and RIG-I. J. Mol. Biol. 2014;426:1351–1365. doi: 10.1016/j.jmb.2013.10.040. PubMed DOI

Lemos de Matos A., McFadden G., Esteves P.J. Positive Evolutionary Selection on the RIG-I-like Receptor Genes in Mammals. PLoS ONE. 2013;8:e81864. doi: 10.1371/journal.pone.0081864. PubMed DOI PMC

Barber M.R.W., Aldridge J., Webster R.G., Magor K.E. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. USA. 2010;107:5913–5918. doi: 10.1073/pnas.1001755107. PubMed DOI PMC

Magor K.E., Navarro D.M., Barber M.R., Petkau K., Fleming-Canepa X., Blyth G., Blaine A.H. Defense genes missing from the flight division. Dev. Comp. Immunol. 2013;41:377–388. doi: 10.1016/j.dci.2013.04.010. PubMed DOI PMC

Hayashi T., Watanabe C., Suzuki Y., Tanikawa T., Uchida Y., Saito T. Chicken MDA5 Senses Short Double-Stranded RNA with Implications for Antiviral Response against Avian Influenza Viruses in Chicken. J. Innate Immun. 2013;6:58–71. doi: 10.1159/000351583. PubMed DOI PMC

Xu L., Yu D., Fan Y., Liu Y.-P., Yao Y.-G. Evolutionary selection on MDA5 and LGP2 in the chicken preserves antiviral competence in the absence of RIG-I. J. Genet. Genom. 2019;46:499–503. doi: 10.1016/j.jgg.2019.10.001. PubMed DOI

Zheng W., Satta Y. Functional Evolution of Avian RIG-I-Like Receptors. Genes. 2018;9:456. doi: 10.3390/genes9090456. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Madden T.L., Tatusov R.L., Zhang J. Applications of network BLAST server. Methods Enzymol. 1996;266:131–141. doi: 10.1016/s0076-6879(96)66011-x. PubMed DOI

Jetz W., Thomas G., Joy J.B., Hartmann K., Mooers A.O. The global diversity of birds in space and time. Nat. Cell Biol. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Jetz W., Thomas G.H., Joy J.B., Redding D.W., Hartmann K., Mooers A.O. Global Distribution and Conservation of Evolutionary Distinctness in Birds. Curr. Biol. CB. 2014;24:919–930. doi: 10.1016/j.cub.2014.03.011. PubMed DOI

Katoh K. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC

Wertheim J.O., Murrell B., Smith M.D., Pond S.L.K., Scheffler K. RELAX: Detecting Relaxed Selection in a Phylogenetic Framework. Mol. Biol. Evol. 2015;32:820–832. doi: 10.1093/molbev/msu400. PubMed DOI PMC

Pond S.L.K., Frost S.D.W., Muse S.V. HyPhy: Hypothesis Testing Using Phylogenies. Bioinformatics. 2005;21:676–679. doi: 10.1093/bioinformatics/bti079. PubMed DOI

Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Zhang J., Nielsen R., Yang Z. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Mol. Biol. Evol. 2005;22:2472–2479. doi: 10.1093/molbev/msi237. PubMed DOI

Pond S.L.K., Frost S.D.W. Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol. Biol. Evol. 2005;22:1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI

Murrell B., Wertheim J.O., Moola S., Weighill T., Scheffler K., Pond S.L.K. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012;8:e1002764. doi: 10.1371/journal.pgen.1002764. PubMed DOI PMC

Yang Z., Wong W.S., Nielsen R. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Mol. Biol. Evol. 2005;22:1107–1118. doi: 10.1093/molbev/msi097. PubMed DOI

Zamyatnin A.A. Amino Acid, Peptide, and Protein Volume in Solution. Annu. Rev. Biophys. Bioeng. 1984;13:145–165. doi: 10.1146/annurev.bb.13.060184.001045. PubMed DOI

Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., Gerlier D., Cusack S. Structural Basis for the Activation of Innate Immune Pattern-Recognition Receptor RIG-I by Viral RNA. Cell. 2011;147:423–435. doi: 10.1016/j.cell.2011.09.039. PubMed DOI

Ren J., Wen L., Gao X., Jin C., Xue Y., Yao X. DOG 1.0: Illustrator of protein domain structures. Cell Res. 2009;19:271–273. doi: 10.1038/cr.2009.6. PubMed DOI

Yang J., Zhang Y. Protein Structure and Function Prediction Using I-TASSER. Curr. Protoc. Bioinform. 2015;52:5.8.1–5.8.15. doi: 10.1002/0471250953.bi0508s52. PubMed DOI PMC

McGuffin L.J., Aldowsari F.M.F., Alharbi S.M.A., Adiyaman R. ModFOLD8: Accurate global and local quality estimates for 3D protein models. Nucleic Acids Res. 2021;49:W425–W430. doi: 10.1093/nar/gkab321. PubMed DOI PMC

Těšický M., Velová H., Novotný M., Kreisinger J., Beneš V., Vinkler M. Positive Se-lection and Convergent Evolution Shape Molecular Phenotypic Traits of Innate Immunity Receptors in Tits (Paridae) Mol. Ecol. 2020;29:3056–3070. doi: 10.1111/mec.15547. PubMed DOI

Donald J.E., Kulp D.W., DeGrado W.F. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins. 2011;79:898–915. doi: 10.1002/prot.22927. PubMed DOI PMC

Onofrio A., Parisi G., Punzi G., Todisco S., Di Noia M.A., Bossis F., Turi A., De Grassi A., Pierri C.L. Distance-dependent hydrophobic–hydrophobic contacts in protein folding simulations. Phys. Chem. Chem. Phys. 2014;16:18907–18917. doi: 10.1039/C4CP01131G. PubMed DOI

Touw W.G., Baakman C., Black J., Beek T.A.H.T., Krieger E., Joosten R., Vriend G. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43:D364–D368. doi: 10.1093/nar/gku1028. PubMed DOI PMC

Fischer H., Tschachler E., Eckhart L. Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Front. Immunol. 2020;11:939. doi: 10.3389/fimmu.2020.00939. PubMed DOI PMC

Xu L., Yu D., Fan Y., Peng L., Wu Y., Yao Y.-G. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proc. Natl. Acad. Sci. USA. 2016;113:10950–10955. doi: 10.1073/pnas.1604939113. PubMed DOI PMC

Braun B.A., Marcovitz A., Camp J.G., Jia R., Bejerano G. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales. Proc. Natl. Acad. Sci. USA. 2015;112:8036–8040. doi: 10.1073/pnas.1501844112. PubMed DOI PMC

Ahn M., Cui J., Irving A.T., Wang L.-F. Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci. Rep. 2016;6:21722. doi: 10.1038/srep21722. PubMed DOI PMC

Bainová H., Králová T., Bryjová A., Albrecht T., Bryja J., Vinkler M. First Evidence of Independent Pseudogenization of Toll-like Receptor 5 in Passerine Birds. Dev. Comp. Immunol. 2014;45:151–155. doi: 10.1016/j.dci.2014.02.010. PubMed DOI

Velová H., Gutowska-Ding M.W., Burt D.W., Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol. Biol. Evol. 2018;35:2170–2184. doi: 10.1093/molbev/msy119. PubMed DOI PMC

Sharma V., Hecker N., Walther F., Stuckas H., Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol. Biol. Evol. 2020;37:1847–1854. doi: 10.1093/molbev/msaa058. PubMed DOI

Karpala A.J., Stewart C., McKay J., Lowenthal J.W., Bean A.G.D. Characterization of Chicken Mda5 Activity: Regulation of IFN-β in the Absence of RIG-I Functionality. J. Immunol. 2011;186:5397–5405. doi: 10.4049/jimmunol.1003712. PubMed DOI

Sirén J., Imaizumi T., Sarkar D., Pietilä T., Noah D.L., Lin R., Hiscott J., Krug R.M., Fisher P.B., Julkunen I., et al. Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect. 2006;8:2013–2020. doi: 10.1016/j.micinf.2006.02.028. PubMed DOI

Bin Lee S., Park Y.H., Chungu K., Woo S.J., Han S.T., Choi H.J., Rengaraj D., Han J.Y. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front. Immunol. 2020;11:678. doi: 10.3389/fimmu.2020.00678. PubMed DOI PMC

Barber M.R., Aldridge J.R., Jr., Fleming-Canepa X., Wang Y.-D., Webster R.G., Magor K.E. Identification of avian RIG-I responsive genes during influenza infection. Mol. Immunol. 2013;54:89–97. doi: 10.1016/j.molimm.2012.10.038. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...