Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU23-03-00172
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU23-01-00323
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
GA23-05474S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
MCL 7005-24
Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
SVV 260634
Univerzita Karlova v Praze (Charles University)
SVV No. 260637
Univerzita Karlova v Praze (Charles University)
SVV260634
Univerzita Karlova v Praze (Charles University)
GAUK 406822
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
PubMed
39966387
PubMed Central
PMC11836139
DOI
10.1038/s41420-025-02341-y
PII: 10.1038/s41420-025-02341-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A large body of evidence suggests that hypoxia drives aggressive molecular features of malignant cells irrespective of cancer type. Non-Hodgkin lymphomas (NHL) are the most common hematologic malignancies characterized by frequent involvement of diverse hypoxic microenvironments. We studied the impact of long-term deep hypoxia (1% O2) on the biology of lymphoma cells. Only 2 out of 6 tested cell lines (Ramos, and HBL2) survived ≥ 4 weeks under hypoxia. The hypoxia-adapted (HA)b Ramos and HBL2 cells had a decreased proliferation rate accompanied by significant suppression of both oxidative phosphorylation and glycolytic pathways. Transcriptome and proteome analyses revealed marked downregulation of genes and proteins of the mitochondrial respiration complexes I and IV, and mitochondrial ribosomal proteins. Despite the observed suppression of glycolysis, the proteome analysis of both HA cell lines showed upregulation of several proteins involved in the regulation of glucose utilization including the active catalytic component of prolyl-4-hydroxylase P4HA1, an important druggable oncogene. HA cell lines demonstrated increased transcription of key regulators of auto-/mitophagy, e.g., neuritin, BCL2 interacting protein 3 (BNIP3), BNIP3-like protein, and BNIP3 pseudogene. Adaptation to hypoxia was further associated with deregulation of apoptosis, namely upregulation of BCL2L1/BCL-XL, overexpression of BCL2L11/BIM, increased binding of BIM to BCL-XL, and significantly increased sensitivity of both HA cell lines to A1155463, a BCL-XL inhibitor. Finally, in both HA cell lines AKT kinase was hyperphosphorylated and the cells showed increased sensitivity to copanlisib, a pan-PI3K inhibitor. In conclusion, our data report on several shared mechanisms of lymphoma cell adaptation to long-term hypoxia including: 1. Upregulation of proteins responsible for glucose utilization, 2. Degradation of mitochondrial proteins for potential mitochondrial recycling (by mitophagy), and 3. Increased dependence on BCL-XL and PI3K-AKT signaling for survival. In translation, inhibition of glycolysis, BCL-XL, or PI3K-AKT cascade may result in targeted elimination of HA lymphoma cells.
Department of Medical Genetics 3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood. 2022;140:1229–53. PubMed PMC
Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–48. PubMed PMC
Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood. 2012;119:5782–94. PubMed PMC
Valsecchi R, Coltella N, Belloni D, Ponente M, Ten Hacken E, Scielzo C, et al. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood. 2016;127:1987–97. PubMed PMC
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–61. PubMed
Oishi N, Hundal T, Phillips JL, Dasari S, Hu G, Viswanatha DS, et al. Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma. Haematologica. 2021;106:1714–24. PubMed PMC
Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73. PubMed PMC
Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA. 2007;104:5431–6. PubMed PMC
Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet. 2019;51:308–18. PubMed
Liu C, Liu L. Hypoxia-related tumor environment correlated with immune infiltration and therapeutic sensitivity in diffuse large B-cell lymphoma. Front Genet. 2022;13:1037716. PubMed PMC
Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L)1 therapy. Biomed Pharmacother. 2023;162:114646. PubMed
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, et al. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. PubMed
Hussain K, Liu R, Smith RCG, Müller KTJ, Ghorbani M, Macari S, et al. HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy. J Exp Clin Cancer Res. 2022;41:131. PubMed PMC
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Sci (N. Y, NY). 2009;324:1029–33. PubMed PMC
Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91. PubMed
Wang Y, Liu Y, Bailey C, Zhang H, He M, Sun D, et al. Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1α with echinomycin. Oncogene. 2020;39:3015–27. PubMed PMC
Zhang H, Li H, Xi HS, Li S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119:2595–607. PubMed PMC
Mancikova V, Pesova M, Pavlova S, Helma R, Zavacka K, Hejret V, et al. Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia patients are reflected in the activation of circumjacent pathways upon DNA damage. Mol Oncol. 2023;17:82–97. PubMed PMC
Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 2019;14:667–82. PubMed PMC
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharm Sci. 2012;33:207–14. PubMed PMC
Duś-Szachniewicz K, Gdesz-Birula K, Zduniak K, Wisniewski JR. Proteomic-based analysis of hypoxia- and physioxia-responsive proteins and pathways in diffuse large B-cell lymphoma. Cells. 2021;10:2025. PubMed PMC
Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: the major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol. 2021;162:103327. PubMed
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-induced resistance to chemotherapy in cancer. Adv Exp Med Biol. 2019;1136:123–39. PubMed
Li Y, Zhao L, Huo Y, Yang X, Li Y, Xu H, et al. Visualization of hypoxia in cancer cells from effusions in animals and cancer patients. Front Oncol. 2022;12:1019360. PubMed PMC
Bhalla K, Jaber S, Nahid MN, Underwood K, Beheshti A, Landon A, et al. Role of hypoxia in diffuse large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci Rep. 2018;8:744. PubMed PMC
Li D, Peng X, He G, Liu J, Li X, Lin W, et al. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell death Dis. 2023;14:409. PubMed PMC
Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab. 2015;3:4. PubMed PMC
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci. 2023;30:86. PubMed PMC
Wang Y, Patti GJ. The Warburg effect: a signature of mitochondrial overload. Trends Cell Biol. 2023;33:1014–1020. PubMed PMC
Thompson CB, Vousden KH, Johnson RS, Koppenol WH, Sies H, Lu Z, et al. A century of the Warburg effect. Nat Metab. 2023;5:1840–3. PubMed
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37. PubMed
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Investig. 2013;123:3664–71. PubMed PMC
Howell SJ, Casbard A, Carucci M, Ingarfield K, Butler R, Morgan S, et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative breast cancer (FAKTION): overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial. Lancet Oncol. 2022;23:851–64. PubMed PMC
Dolnikova A, Kazantsev D, Klanova M, Pokorna E, Sovilj D, Kelemen CD. et al. Blockage of BCL-XL overcomes venetoclax resistance across BCL2-positive lymphoid malignancies irrespective of BIM status. Blood Adv. 2024;8:3532–3543. PubMed PMC
Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1{alpha. J Biol Chem. 2009;284:10004–12. PubMed PMC
Chen WL, Wang CC, Lin YJ, Wu CP, Hsieh CH. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J Transl Med. 2015;13:389. PubMed PMC
Cao XP, Cao Y, Li WJ, Zhang HH, Zhu ZM. P4HA1/HIF1α feedback loop drives the glycolytic and malignant phenotypes of pancreatic cancer. Biochem Biophys Res Commun. 2019;516:606–12. PubMed
Li Y, Ge YZ, Qian Y, Chen K, Zhao F, Qin Z, et al. The role of P4HA1 in multiple cancer types and its potential as a target in renal cell carcinoma. Front Genet. 2022;13:848456. PubMed PMC
Ning Y, Zheng H, Zhan Y, Liu S, Yang Y, Zang H, et al. Overexpression of P4HA1 associates with poor prognosis and promotes cell proliferation and metastasis of lung adenocarcinoma. J Cancer. 2021;12:6685–94. PubMed PMC
Zhao Q, Liu J. P4HA1, a prognostic biomarker that correlates with immune infiltrates in lung adenocarcinoma and pan-cancer. Front Cell Dev Biol. 2021;9:754580. PubMed PMC
Kaluz S, Zhang Q, Kuranaga Y, Yang H, Osuka S, Bhattacharya D, et al. Targeting HIF-activated collagen prolyl 4-hydroxylase expression disrupts collagen deposition and blocks primary and metastatic uveal melanoma growth. Oncogene. 2021;40:5182–91. PubMed PMC
Place TL, Domann FE, Case AJ. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic Biol Med. 2017;113:311–22. PubMed PMC
Phillips NR, Sprouse ML, Roby RK. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep. 2014;4:3887. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinforma (Oxf, Engl). 2015;31:166–9. PubMed PMC
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. PubMed PMC
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97. PubMed PMC
Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9. PubMed