Interactions between leukemia and feeders in co-cultivation under hypoxia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 406822
Grant Agency of Charles University
SVV 260634
Charles University
Physiology and Pathophysiology
Charles University - Cooperatio Program
NU21-03-00386
Agentura Pro Zdravotnický Výzkum České Republiky,Czechia
PubMed
40229651
PubMed Central
PMC11995666
DOI
10.1186/s12885-025-13988-2
PII: 10.1186/s12885-025-13988-2
Knihovny.cz E-zdroje
- Klíčová slova
- Co-cultivation, Feeders, Hypoxia, Leukemic cells, Tumor microenvironment,
- MeSH
- fibroblasty * metabolismus MeSH
- glykolýza MeSH
- hypoxie buňky MeSH
- kokultivační techniky metody MeSH
- leukemie * patologie metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Leukemia is driven by complex interactions within the inherently hypoxic bone marrow microenvironment, impacting both disease progression and therapeutic resistance. Co-cultivation of leukemic cells with feeder cells has emerged as a valuable tool to mimic the bone marrow niche. This study explores the interplay between human commercial SD-1 and patient-derived UPF26K leukemic cell lines with feeders - human fibroblasts (NHDF) and mesenchymal stem cells (hMSCs) under normoxic and hypoxic conditions. RESULTS: Co-cultivation with feeders significantly enhances proliferation and glycolytic activity in the SD-1 cells, improving their viability, while this interaction inhibits the growth and glucose metabolism of the feeders, particularly NHDF. In contrast, UPF26K cells show reduced proliferation when co-cultivated with the feeders while this interaction stimulates NHDF and hMSCs proliferation and glycolysis but reduce their mitochondrial metabolism with hypoxia amplifying these effects. CONCLUSIONS: Cells that switch to glycolysis during co-cultivation, particularly under hypoxia, benefit most from these low oxygen conditions. Due to this leukemic cells' response heterogeneity, targeting microenvironmental interactions and oxygen levels is crucial for personalized leukemia therapy. Advancing co-cultivation models, particularly through innovations like spheroids, can further enhance in vitro studies of primary leukemic cells and support the testing of novel therapies.
Zobrazit více v PubMed
Ahani-Nahayati M, Solali S, Asenjan KS, Akbari AAM, Talebi M, Heydarabad MZ, Baharaghdam S, Hagh MF. Promoter methylation status of survival-related genes in MOLT-4 cells co-cultured with bone marrow mesenchymal stem cells under hypoxic conditions. Cell J. 2018;20(2):188–94. 10.22074/cellj.2018.5101 PubMed PMC
Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR. Hypoxia-Modified cancer cell metabolism. Front Cell Dev Biology. 2019. 7. 10.3389/fcell.2019.00004 PubMed PMC
Ashley DM, Bol SJ, Kannourakis G. Measurement of the growth parameters of precursor B-acute lymphoblastic leukaemic cells in co-culture with bone marrow stromal cells; detection of two CD10 positive populations with different proliferative capacities and survival. Leuk Res. 1994;18(1):37–48. 10.1016/0145-2126(94)90007-8 PubMed
Balandrán JC, Dávila-Velderrain J, Sandoval-Cabrera A, Zamora-Herrera G, Terán-Cerqueda V, García-Stivalet LA, Limón-Flores JA, Armenta-Castro E, Rodríguez-Martínez A, Leon-Chavez BA, Vallejo-Ruiz V, Hassane DC, Pérez-Tapia SM, Ortiz-Navarrete V, Guzman ML, Pelayo R. Patient-Derived bone marrow spheroids reveal Leukemia-Initiating cells supported by mesenchymal hypoxic niches in pediatric B-ALL. Front Immunol. 2021;12. 10.3389/fimmu.2021.746492 PubMed PMC
Bassi EJ, Aita CAM, Câmara NOS. Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells. 2011;3(1):1–8. 10.4252/wjsc.v3.i1.1 PubMed PMC
Boraldi F, Annovi G, Carraro F, Naldini A, Tiozzo R, Sommer P, Quaglino D. Hypoxia influences the cellular cross-talk of human dermal fibroblasts. A proteomic approach. Biochim Et Biophys Acta (BBA) - Proteins Proteom. 2007;1774(11):1402–13. 10.1016/j.bbapap.2007.08.011 PubMed
Boutter J, Huang Y, Marovca B, Vonderheit A, Grotzer MA, Eckert C, Cario G, Wollscheid B, Horvath P, Bornhauser BC, Bourquin J-P. Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget. 2014;5(22):11501–12. 10.18632/oncotarget.2572 PubMed PMC
Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone Marrow-Derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Translational Med. 2014;3(2):241–54. 10.5966/sctm.2013-0079 PubMed PMC
Bruce A, Evans R, Mezan R, Shi L, Moses BS, Martin KH, Gibson LF, Yang Y. Three-Dimensional microfluidic Tri-Culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS ONE. 2015;10(10):e0140506. 10.1371/journal.pone.0140506 PubMed PMC
Buizer AT, Bulstra SK, Veldhuizen AG, Kuijer R. The balance between proliferation and transcription of angiogenic factors of mesenchymal stem cells in hypoxia. Connect Tissue Res. 2018;59(1):12–20. 10.1080/03008207.2017.1289189 PubMed
Burt RJ, Dey A, Akarca A, Allen H, Amerikanou R, Atkinson S, Auty D, Chatzigerou J, Cutler E, Guerra-Assuncao JA, Kirschner K, Kumari R, Manji J, Marafioti T, Ward J, Fielding AK. Mitochondrial DsRNA from B-ALL cells stimulates mesenchymal stromal cells to become cancer-associated fibroblasts. Blood Adv. 2024;8(21):5696–709. 10.1182/bloodadvances.2023012077 PubMed PMC
Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. 2016.10.1186/s13058-016-0740-2 PubMed PMC
Carles-Fontana R, Heaton N, Palma E, Khorsandi S. Extracellular Vesicle-Mediated mitochondrial reprogramming in cancer. Cancers. 2022;14(8):1865. 10.3390/cancers14081865 PubMed PMC
Caron M, St-Onge P, Sontag T, Wang YC, Richer C, Ragoussis I, Sinnett D, Bourque G. Single-cell analysis of childhood leukemia reveals a link between developmental States and ribosomal protein expression as a source of intra-individual heterogeneity. Sci Rep. 2020;10(1). 10.1038/s41598-020-64929-x PubMed PMC
Civini S, Jin P, Ren J, Sabatino M, Castiello L, Jin J, Wang H, Zhao Y, Marincola F, Stroncek D. Leukemia cells induce changes in human bone marrow stromal cells. J Translational Med. 2013;11(1):298. 10.1186/1479-5876-11-298 PubMed PMC
de Vasconcellos JF, Laranjeira ABA, Zanchin NIT, Otubo R, Vaz TH, Cardoso AA, Brandalise SR, Yunes JA. Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(4):568–77. 10.1002/pbc.22941 PubMed
Daumova L, Manakov D, Petrak J, Sovilj D, Behounek M, Andera L, Vit O, Souckova O, Havranek O, Dolnikova A, Renesova N, Tuskova L, Winkowska L, Bettazova N, Kupcova K, Kalbacova MH, Sikorova M, Trneny M, Klener P. Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors. Cell Death Discovery. 2025;11(1):65. 10.1038/s41420-025-02341-y PubMed PMC
Deynoux M, Sunter N, Hérault O, Mazurier F. Hypoxia and Hypoxia-Inducible factors in leukemias. Front Oncol. 2016. 10.3389/fonc.2016.00041. 6. PubMed PMC
Dolnikova A, Kazantsev D, Klanova M, Pokorna E, Sovilj D, Kelemen CD, Tuskova L, Hoferkova E, Mraz M, Helman K, Curik N, Polakova M, Andera K, Trneny L, M., Klener P. Blockage of BCL-XL overcomes venetoclax resistance across BCL2 + lymphoid malignancies irrespective of BIM status. Blood Adv. 2024;8(13):3532–43. 10.1182/bloodadvances.2024012906 PubMed PMC
Dunigan DD, Waters SB, Owen TC. Aqueous soluble Tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity. Biotechniques. 1995;19(4):640–9. PubMed
Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev. 2017;114:222–39. 10.1016/j.addr.2017.06.005 PubMed
Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M. The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull. 2015;5(2):141–9. 10.15171/apb.2015.021 PubMed PMC
Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, Cammenga J, Jönsson J-I. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol. 2010;38(4):301–e3102. 10.1016/j.exphem.2010.01.005 PubMed
Forni MF, Peloggia J, Trudeau K, Shirihai O, Kowaltowski AJ. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells. 2016;34(3):743–55. 10.1002/stem.2248 PubMed PMC
Frismantas V, Dobay MP, Rinaldi A, Tchinda J, Dunn SH, Kunz J, Richter-Pechanska P, Marovca B, Pail O, Jenni S, Diaz-Flores E, Chang BH, Brown TJ, Collins RH, Uhrig S, Balasubramanian GP, Bandapalli OR, Higi S, Eugster S, Bourquin J-P. e-Blood LYMPHOID NEOPLASIA ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. 2017.10.1182/blood-2016-09 PubMed PMC
Frolova O, Samudio I, Benito JM, Jacamo R, Kornblau SM, Markovic A, Schober W, Lu H, Qiu YH, Buglio D, McQueen T, Pierce S, Shpall EJ, Konoplev S, Thomas D, Kantarjian H, Lock R, Andreeff M, Konopleva M. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol Ther. 2012;13(10):858–70. 10.4161/cbt.20838 PubMed PMC
Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I, Nitta M. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer. 2014;14(1):76. 10.1186/1471-2407-14-76 PubMed PMC
Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun. 2007;358(3):948–53. 10.1016/j.bbrc.2007.05.054 PubMed
Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006;207(2):331–9. 10.1002/jcp.20571 PubMed
Greaves MF. Analysis of the clinical and biological significance of lymphoid phenotypes in acute leukemia. Cancer Res. 1981;41(11 Pt 2):4752–66. PubMed
Griessinger E, Moschoi R, Biondani G, Peyron J-F. Mitochondrial transfer in the leukemia microenvironment. Trends Cancer. 2017;3(12):828–39. 10.1016/j.trecan.2017.10.003 PubMed
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, while leukaemic cells are protected. Mutagenesis. 2021;36(6):419–28. 10.1093/mutage/geab033 PubMed PMC
Haselager MV, van Driel BF, Perelaer E, de Rooij D, Lashgari D, Loos R, Kater AP, Moerland PD, Eldering E. In vitro 3D spheroid culture system displays sustained T Cell-dependent CLL proliferation and survival. HemaSphere. 2023;7(9):e938. 10.1097/HS9.0000000000000938 PubMed PMC
Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Müller I. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol. 2010;11. 10.1186/1471-2121-11-11 PubMed PMC
Hsu P, Qu C-K. Metabolic plasticity and hematopoietic stem cell biology. Curr Opin Hematol. 2013;20(4):289–94. 10.1097/MOH.0b013e328360ab4d PubMed PMC
Jacamo R, Benito J, Frolova O, Chen Y, Lu H, Konopleva M, Andreeff M. Role of hypoxia and hypoxia-Inducible-Factor 1α (HIF1A) in the BM Microenvironment-Mediated protection of leukemic cells. Blood. 2010;116(21):2586–2586. 10.1182/blood.V116.21.2586.2586
Jena BC, Das CK, Banerjee I, Bharadwaj D, Majumder R, Das S, Biswas A, Kundu M, Roy PK, Kundu CN, Mandal M. TGF-β1 induced autophagy in cancer associated fibroblasts during hypoxia contributes EMT and Glycolysis via MCT4 upregulation. Exp Cell Res. 2022;417(1):113195. 10.1016/j.yexcr.2022.113195 PubMed
Jitschin R, Böttcher M, Saul D, Lukassen S, Bruns H, Loschinski R, Ekici AB, Reis A, Mackensen A, Mougiakakos D. Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation. Leukemia. 2019;33(7):1783–96. 10.1038/s41375-018-0376-6 PubMed
Katsuno M, Hirata J, Kaneko S, Nishimura J, Motomura S, Ibayashi H. Serial studies of bone Marrow-Derived fibroblastoid Colony-Forming cells and granulocyte/macrophage precursor cells in patients with acute leukemia. Acta Haematol. 1986;76(4):185–91. 10.1159/000206053 PubMed
Keeley TP, Mann GE. Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol Rev. 2019;99(1):161–234. 10.1152/physrev.00041.2017 PubMed
Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, Helgason GV, Gottlieb E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40. 10.1038/nm.4399 PubMed PMC
Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT. BCL-2 Inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41. 10.1016/j.stem.2012.12.013 PubMed PMC
Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood. 1998;91(7):2387–96. PubMed
Lee MW, Ryu S, Kim DS, Lee JW, Sung KW, Koo HH, Yoo KH. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia. 2019;33(3):597–611. 10.1038/s41375-018-0373-9 PubMed PMC
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic biomarkers and their clinical implications in B-Cell acute lymphoblastic leukemia in children. Int J Mol Sci. 2022;23(5). 10.3390/ijms23052755 PubMed PMC
Liu X, Hajnóczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia–reoxygenation stress. Cell Death Differ. 2011;18(10):1561–72. 10.1038/cdd.2011.13 PubMed PMC
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62. 10.1016/S0140-6736(19)33018-1 PubMed
Manabe A, Coustan-Smith E, Behm F, Raimondi S, Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B- lineage acute lymphoblastic leukemia. Blood. 1992;79(9):2370–7. 10.1182/blood.V79.9.2370.2370 PubMed
May M, Slaughter A, Lucas D. Dynamic regulation of hematopoietic stem cells by bone marrow niches. Curr Stem Cell Rep. 2018;4:201–8. 10.1007/s40778-018-0132-x PubMed PMC
McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res. 2013;50(5):357–71. 10.1159/000353883 PubMed PMC
Medyouf H. The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood. 2017;129(12):1617–26. 10.1182/blood-2016-11-696070 PubMed
Mordhorst BR, Murphy SL, Schauflinger M, Rojas Salazar S, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Porcine Fetal-Derived fibroblasts alter gene expression and mitochondria to compensate for hypoxic stress during culture. Cell Reprogramming. 2018;20(4):225–35. 10.1089/cell.2018.0008 PubMed PMC
Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, Saland E, Castellano R, Pouyet L, Collette Y, Vey N, Chabannon C, Recher C, Sarry J-E, Alcor D, Peyron J-F, Griessinger E. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128(2):253–64. 10.1182/blood-2015-07-655860 PubMed
Moses BS, Slone WL, Thomas P, Evans R, Piktel D, Angel PM, Walsh CM, Cantrell PS, Rellick SL, Martin KH, Simpkins JW, Gibson LF. Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Exp Hematol. 2016;44(1):50–9. 10.1016/j.exphem.2015.09.003..e1-2. PubMed PMC
Naderi EH, Skah S, Ugland H, Myklebost O, Sandnes DL, Torgersen ML, Josefsen D, Ruud E, Naderi S, Blomhoff HK. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death. Mol Cancer. 2015;14(1):14. 10.1186/s12943-014-0278-9 PubMed PMC
Nahoui-Zarouri I, Léger C, El Samra G, Cottet‐Rousselle C, Moulis J. Time‐dependent effects of hypoxia on cell metabolism, signaling, and iron homeostasis in the hematopoietic progenitor model KG1a. FEBS Open Bio. 2023;13(7):1291–308. 10.1002/2211-5463.13527 PubMed PMC
Nara N, Jinnai I, Imaia Y, Bessho M, Hirashima K. Reduction of Granulocyte-Macrophage progenitor cells (CFU-C) and fibroblastoid Colony-Forming units (CFU-F) by leukemic cells in human and murine leukemia. Acta Haematol. 1984;72(3):171–80. 10.1159/000206383 PubMed
Nayak P, Bentivoglio V, Varani M, Signore A. Three-Dimensional in vitro tumor spheroid models for evaluation of anticancer therapy. Recent Updates Cancers. 2023;15(19):4846. 10.3390/cancers15194846 PubMed PMC
Notta F, Mullighan CG, Wang JCY, Poeppl A, Doulatov S, Phillips LA, Ma J, Minden MD, Downing JR, Dick JE. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469(7330):362–7. 10.1038/nature09733 PubMed
Nuschke A, Rodrigues M, Wells AW, Sylakowski K, Wells A. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther. 2016;7(1):179. 10.1186/s13287-016-0436-7 PubMed PMC
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metabolism. 2021;9(1):17. 10.1186/s40170-021-00253-w PubMed PMC
Park CS, Yoshihara H, Gao Q, Qu C, Iacobucci I, Ghate PS, Connelly JP, Pruett-Miller SM, Wagner B, Robinson CG, Mishra A, Peng J, Yang L, Rankovic Z, Finkelstein D, Luger S, Litzow M, Paietta EM, Hebbar N, Mullighan CG. Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell Rep. 2023;42(7):112804. 10.1016/j.celrep.2023.112804 PubMed PMC
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metabol. 2016;23(1):27–47. 10.1016/j.cmet.2015.12.006 PubMed PMC
Petit C, Gouel F, Dubus I, Heuclin C, Roget K, Vannier JP. Hypoxia promotes chemoresistance in acute lymphoblastic leukemia cell lines by modulating death signaling pathways. BMC Cancer. 2016;16(1). 10.1186/s12885-016-2776-1 PubMed PMC
Pytlík R, Stehlík D, Soukup T, Kalbáčová M, Rypáček F, Trč T, Mulinková K, Michnová P, Kideryová L, Živný J, Klener P, Veselá R, Trněný M, Klener P. The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials. 2009;30(20):3415–27. 10.1016/j.biomaterials.2009.03.001 PubMed
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16(1):31. 10.1186/s12943-017-0597-8 PubMed PMC
Runa F, Hamalian S, Meade K, Shisgal P, Gray PC, Kelber JA. Tumor microenvironment heterogeneity: challenges and opportunities. Curr Mol Biology Rep. 2017;3(4):218–29. 10.1007/s40610-017-0073-7 PubMed PMC
Saller MM, Prall WC, Docheva D, Schönitzer V, Popov T, Anz D, Clausen-Schaumann H, Mutschler W, Volkmer E, Schieker M, Polzer H. Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun. 2012;423(2):379–85. 10.1016/j.bbrc.2012.05.134 PubMed
Shah N, Oseth L, LeBien TW. Development of a model for evaluating the interaction between human pre-B acute lymphoblastic leukemic cells and the bone marrow stromal cell microenvironment. Blood. 1998;92(10):3817–28. PubMed
Smeets MWE, Steeghs EMP, Orsel J, Stalpers F, Vermeeren MMP, Veltman CHJ, Slenders L, Nierkens S, Van de Ven C, Boer D, M. L. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/βresponse in bone marrow-derived mesenchymal stroma. Haematologica. 2024. 10.3324/haematol.2023.283494 PubMed PMC
Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: two sides of the same coin? J Cell Physiol. 2018;233(12):9099–109. 10.1002/jcp.26860 PubMed
Srivannaboon K, Shanafelt AB, Todisco E, Forte CP, Behm FG, Raimondi SC, Pui C-H, Campana D. Interleukin-4 variant (BAY 36-1677) selectively induces apoptosis in acute lymphoblastic leukemia cells. Blood. 2001;97(3):752–8. 10.1182/blood.V97.3.752 PubMed
Stolze B, Emmendörffer A, Corbacioglu S, König A, Welte K, Ebell W. Effects of bone marrow fibroblasts on the proliferation and differentiation of myeloid leukemic cell lines. Exp Hematol. 1995;23(13):1378–87. PubMed
Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, Mizuno S, Takahashi M, Yamamoto H, Hiramatsu A, Wakabayashi M, Watarai M, Hanamura I, Imamura A, Mihara H, Nitta M. Energy metabolism of leukemia cells: Glycolysis versus oxidative phosphorylation. Leuk Lymphoma. 2010;51(11):2112–9. 10.3109/10428194.2010.512966 PubMed
Takubo K, Suda T. Roles of the hypoxia response system in hematopoietic and leukemic stem cells. Int J Hematol. 2012;95(5):478–83. 10.1007/s12185-012-1071-4 PubMed
Tonarova P, Lochovska K, Pytlik R, Kalbacova H. M. (2021). The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells International, 2021;1–15. 10.1155/2021/6659244 PubMed PMC
Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329(5998):1492–9. 10.1126/science.1188015 PubMed PMC
Vianello F, Villanova F, Tisato V, Lymperi S, Ho K-K, Gomes AR, Marin D, Bonnet D, Apperley J, Lam EW-F, Dazzi F. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95(7):1081–9. 10.3324/haematol.2009.017178 PubMed PMC
Vogler M, Vogel S, Krull S, Farhat K, Leisering P, Lutz S, Wuertz CM, Katschinski DM, Zieseniss A. Hypoxia modulates fibroblastic architecture, adhesion and migration: A role for HIF-1α in Cofilin regulation and cytoplasmic actin distribution. PLoS ONE. 2013;8(7):e69128. 10.1371/journal.pone.0069128 PubMed PMC
Wang W, Bochtler T, Wuchter P, Manta L, He H, Eckstein V, Ho AD, Lutz C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur J Haematol. 2017;99(5):392–8. 10.1111/ejh.12934 PubMed
Warburg O, Posener K, Negelein E. Uber Den Stoffwechsel der carcinomzelle. Die Naturwiss. 1924;12(50):1131–7. 10.1007/BF01504608
Wierenga ATJ, Cunningham A, Erdem A, Lopera NV, Brouwers-Vos AZ, Pruis M, Mulder AB, Günther UL, Martens JHA, Vellenga E, Schuringa JJ. HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for Glycolysis in human leukemic stem/progenitor cells. Cancer Metabolism. 2019;7(1):11. 10.1186/s40170-019-0206-y PubMed PMC
Wilson A, Hockney S, Parker J, Angel S, Blair H, Pal D. A human mesenchymal spheroid prototype to replace moderate severity animal procedures in leukaemia drug testing. F1000Research. 2023;11:1280. 10.12688/f1000research.123084.2 PubMed PMC
Xiao W, Wang R-S, Handy DE, Loscalzo J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal. 2018;28(3):251–72. 10.1089/ars.2017.7216 PubMed PMC
Yang Y, Mallampati S, Sun B, Zhang J, Kim S-B, Lee J-S, Gong Y, Cai Z, Sun X. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 2013;333(1):9–17. 10.1016/j.canlet.2012.11.056 PubMed PMC
Zhang L, Zheng W, Wang Y, Wang Y, Huang H. Human bone marrow mesenchymal stem cells support the derivation and propagation of human induced pluripotent stem cells in culture. Cell Reprogramming. 2013;15(3):216–23. 10.1089/cell.2012.0064 PubMed PMC
Marchand T, Pinho S. Leukemic stem cells: from leukemic niche biology to treatment opportunities. Front Immunol. 2021;12:775128. 10.3389/fimmu.2021.775128 PubMed PMC
Richards M, Tan S, Fong C-Y, Biswas A, Chan W-K, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. In Stem Cells. 2003;21. PubMed
Sheard MA, Ghent MV, Cabral DJ, Lee JC, Khankaldyyan V, Ji L, et al. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration. Exp Cell Res. 2015;334(1):78–89. 10.1016/j.yexcr.2015.03.024 PubMed PMC
Huang D, Li C, Zhang H. Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin. 2014;46(3):214–9. 10.1093/abbs/gmt148 PubMed
Song K, Li M, Xu X-J, Xuan L, Huang G-N, Song X-L, et al. HIF-1α and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia. Asian Pac J Cancer Prev. 2014;15(4):1823–9. 10.7314/APJCP.2014.15.4.1823 PubMed
Patel C, Stenke L, Varma S, Lindberg ML, Björkholm M, Sjöberg J, et al. Multidrug resistance in relapsed acute myeloid leukemia: evidence of biological heterogeneity. Cancer. 2013;119(16):3076–83. 10.1002/cncr.28098 PubMed PMC