The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33727935
PubMed Central
PMC7939743
DOI
10.1155/2021/6659244
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In vitro and in vivo analyses are closely connected, and the reciprocal relationship between the two comprises a key assumption with concern to the conducting of meaningful research. The primary purpose of in vitro analysis is to provide a solid background for in vivo and clinical study purposes. The fields of cell therapy, tissue engineering, and regenerative medicine depend upon the high quality and appropriate degree of the expansion of mesenchymal stromal cells (MSCs) under low-risk and well-defined conditions. Hence, it is necessary to determine suitable alternatives to fetal bovine serum (FBS-the laboratory gold standard) that comply with all the relevant clinical requirements and that provide the appropriate quantity of high-quality cells while preserving the required properties. Human serum (autologous and allogeneic) and blood platelet lysates and releasates are currently considered to offer promising and relatively well-accessible MSC cultivation alternatives. Our study compared the effect of heat-inactivated FBS on MSC metabolism as compared to its native form (both are used as the standard in laboratory practice) and to potential alternatives with concern to clinical application-human serum (allogeneic and autologous) or platelet releasate (PR-SRGF). The influence of the origin of the serum (fetal versus adult) was also determined. The results revealed the key impact of the heat inactivation of FBS on MSCs and the effectiveness of human sera and platelet releasates with respect to MSC behaviour (metabolic activity, proliferation, morphology, and cytokine production).
Zobrazit více v PubMed
Verdanova M., Sauerova P., Hempel U., Kalbacova M. H. Initial cell adhesion of three cell types in the presence and absence of serum proteins. Histochemistry and Cell Biology. 2017;148(3):273–288. doi: 10.1007/s00418-017-1571-7. PubMed DOI
Fang C.-Y., Wu C.-C., Fang C.-L., Chen W.-Y., Chen C.-L. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS One. 2017;12(6):p. e0178960. doi: 10.1371/journal.pone.0178960. PubMed DOI PMC
Astori G., Amati E., Bambi F., et al. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Research & Therapy. 2016;7(1):p. 93. doi: 10.1186/s13287-016-0352-x. PubMed DOI PMC
Piletz J. E., Drivon J., Eisenga J., et al. Human cells grown with or without substitutes for fetal bovine serum. Cell Medicine. 2018;10:p. 215517901875514. doi: 10.1177/2155179018755140. PubMed DOI PMC
Selvaggi T. A., Walker R. E., Fleisher T. A. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus–infected patients given syngeneic lymphocyte infusions. Blood. 1997;89(3):776–779. doi: 10.1182/blood.V89.3.776. PubMed DOI
van der Valk J., Bieback K., Buta C., et al. Fetal bovine serum (FBS): past – present – future. ALTEX. 2018;35(1):99–118. doi: 10.14573/altex.1705101. PubMed DOI
Doucet C., Ernou I., Zhang Y., et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. Journal of Cellular Physiology. 2005;205(2):228–236. doi: 10.1002/jcp.20391. PubMed DOI
de Mos M., van der Windt A. E., Jahr H., et al. Can platelet-rich plasma enhance tendon Repair? The American Journal of Sports Medicine. 2017;36(6):1171–1178. doi: 10.1177/0363546508314430. PubMed DOI
Bieback K. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfusion Medicine and Hemotherapy. 2013;40(5):326–335. doi: 10.1159/000354061. PubMed DOI PMC
Bieback K., Hecker A., Kocaömer A., et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27(9):2331–2341. doi: 10.1002/stem.139. PubMed DOI
Heijnen H., van der Sluijs P. Platelet secretory behaviour: as diverse as the granules … or not? Journal of Thrombosis and Haemostasis. 2015;13(12):2141–2151. doi: 10.1111/jth.13147. PubMed DOI
Anitua E., Muruzabal F., Tayebba A., et al. Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmologica. 2015;93(8):e605–e614. doi: 10.1111/aos.12710. PubMed DOI
Mitchell A., Rivas K. A., Smith R., Watts A. E. Cryopreservation of equine mesenchymal stem cells in 95 % autologous serum and 5 % DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95 % and DMSO at 10 or 5 % Stem Cell Research & Therapy. 2015;6(1):p. 231. doi: 10.1186/s13287-015-0230-y. PubMed DOI PMC
Flahaut E., Durrieu M. C., Remy-Zolghadri M., Bareille R., Baquey C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon. 2006;44(6):1093–1099. doi: 10.1016/j.carbon.2005.11.007. DOI
Hemeda H., Giebel B., Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014;16(2):170–180. doi: 10.1016/j.jcyt.2013.11.004. PubMed DOI
van der Valk J., Brunner D., de Smet K., et al. Optimization of chemically defined cell culture media - Replacing fetal bovine serum in mammalian _in vitro_ methods. Toxicology In Vitro. 2010;24(4):1053–1063. doi: 10.1016/j.tiv.2010.03.016. PubMed DOI
Dominici M., le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905. PubMed DOI
Nimura A., Muneta T., Otabe K., et al. Analysis of human synovial and bone marrow mesenchymal stem cells in relation to heat-inactivation of autologous and fetal bovine serums. BMC Musculoskelet. Disord. 2010;11(1):p. ???. doi: 10.1186/1471-2474-11-208. PubMed DOI PMC
Bruinink A., Tobler U., Hälg M., Grünert J. Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells. Journal of Materials Science. Materials in Medicine. 2004;15(4):497–501. doi: 10.1023/B:JMSM.0000021127.62879.a1. PubMed DOI
Gray A., Schloss R. S., Yarmush M. Donor variability among anti-inflammatory pre-activated mesenchymal stromal cells. Technology. 2016;4(3):201–215. doi: 10.1142/S2339547816500084. PubMed DOI PMC
Siddappa R., Licht R., van Blitterswijk C., de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Journal of Orthopaedic Research. 2007;25(8):1029–1041. doi: 10.1002/jor.20402. PubMed DOI
Detela G., Bain O. W., Kim H. W., et al. Donor variability in growth kinetics of healthy hMSCs using manual processing: considerations for manufacture of cell therapies. Biotechnology Journal. 2018;13(2):p. 1700085. doi: 10.1002/biot.201700085. PubMed DOI
Huang F.-P., Stott D. I. Dual inhibitory and stimulatory activities in serum from SLE patients and lupus mice that regulate the proliferation of an IL-2-dependent T cell line. Lupus. 2016;4(4):297–303. doi: 10.1177/096120339500400411. PubMed DOI
Ayache S., Panelli M. C., Byrne K. M., et al. Comparison of proteomic profiles of serum, plasma, and modified media supplements used for cell culture and expansion. Journal of Translational Medicine. 2006;4(1):p. 40. doi: 10.1186/1479-5876-4-40. PubMed DOI PMC
Hankey D. P., McCabe R. E., Doherty M. J., et al. Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum. Acta Orthopaedica Scandinavica. 2009;72(4):395–403. doi: 10.1080/000164701753542069. PubMed DOI
Kocaoemer A., Kern S., Klüter H., Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells. 2007;25(5):1270–1278. doi: 10.1634/stemcells.2006-0627. PubMed DOI
Heger J. I., Froehlich K., Pastuschek J., et al. Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum. Experimental Cell Research. 2018;365(1):57–65. doi: 10.1016/j.yexcr.2018.02.017. PubMed DOI
Burnouf T., Strunk D., Koh M. B. C., Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016;76:371–387. doi: 10.1016/j.biomaterials.2015.10.065. PubMed DOI
Murphy M. B., Blashki D., Buchanan R. M., et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials. 2012;33(21):5308–5316. doi: 10.1016/j.biomaterials.2012.04.007. PubMed DOI
Fazzina R., Iudicone P., Mariotti A., et al. Culture of human cell lines by a pathogen-inactivated human platelet lysate. Cytotechnology. 2016;68(4):1185–1195. doi: 10.1007/s10616-015-9878-5. PubMed DOI PMC
Shih D. T.-B., Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for _ex vivo_ stem cell expansion. New Biotechnology. 2015;32(1):199–211. doi: 10.1016/j.nbt.2014.06.001. PubMed DOI PMC
Forni M. F., Peloggia J., Trudeau K., Shirihai O., Kowaltowski A. J. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells. 2016;34(3):743–755. doi: 10.1002/stem.2248. PubMed DOI PMC
Estrada J. C., Albo C., Benguría A., et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death and Differentiation. 2012;19(5):743–755. doi: 10.1038/cdd.2011.172. PubMed DOI PMC
Mylotte L. A., Duffy A. M., Murphy M., et al. Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells. 2008;26(5):1325–1336. doi: 10.1634/stemcells.2007-1072. PubMed DOI
Nuschke A., Rodrigues M., Wells A. W., Sylakowski K., Wells A. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Research & Therapy. 2016;7(1):p. 179. doi: 10.1186/s13287-016-0436-7. PubMed DOI PMC
Birsoy K., Wang T., Chen W. W., Freinkman E., Abu-Remaileh M., Sabatini D. M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540–551. doi: 10.1016/j.cell.2015.07.016. PubMed DOI PMC
Molina J. R., Sun Y., Protopopova M., et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine. 2018;24(7):1036–1046. doi: 10.1038/s41591-018-0052-4. PubMed DOI
Sullivan L. B., Gui D. Y., Hosios A. M., Bush L. N., Freinkman E., Vander Heiden M. G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 2015;162(3):552–563. doi: 10.1016/j.cell.2015.07.017. PubMed DOI PMC
Puel A., Casanova J.-L. The nature of human IL-6. The Journal of Experimental Medicine. 2019;216(9):1969–1971. doi: 10.1084/jem.20191002. PubMed DOI PMC
Alfaro C., Sanmamed M. F., Rodríguez-Ruiz M. E., et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treatment Reviews. 2017;60:24–31. doi: 10.1016/j.ctrv.2017.08.004. PubMed DOI
Mikolajczyk T. P., Nosalski R., Szczepaniak P., et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. The FASEB Journal. 2016;30(5):1987–1999. doi: 10.1096/fj.201500088R. PubMed DOI PMC
Yoshimura T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 2017;98:71–78. doi: 10.1016/j.cyto.2017.02.001. PubMed DOI
Bayo J., Real A., Fiore E. J., et al. IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrow-derived mesenchymal stromal cells without affecting tumor aggressiveness. Oncotarget. 2017;8(46):80235–80248. doi: 10.18632/oncotarget.10288. PubMed DOI PMC
Jiang Z., Liu Y. M., Niu X., et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Research & Therapy. 2016;7(1):p. ???. doi: 10.1186/s13287-016-0287-2. PubMed DOI PMC
Knight C., James S., Kuntin D., et al. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cellular Signalling. 2019;53:256–268. doi: 10.1016/j.cellsig.2018.09.021. PubMed DOI PMC
Wei J., Igarashi T., Okumori N., et al. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomedical Materials. 2009;4(4):p. 045002. doi: 10.1088/1748-6041/4/4/045002. PubMed DOI
Weaving G., Batstone G. F., Jones R. G. Age and sex variation in serum albumin concentration: an observational study. Annals of Clinical Biochemistry. 2016;53(1):106–111. doi: 10.1177/0004563215593561. PubMed DOI
Moshage H. J., Janssen J. A., Franssen J. H., Hafkenscheid J. C., Yap S. H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. The Journal of Clinical Investigation. 1987;79(6):1635–1641. doi: 10.1172/JCI113000. PubMed DOI PMC
Kasprzyk M., Dyszkiewicz W., Zwaruń D., Leśniewska K., Wiktorowicz K. Assessment of acute phase proteins as prognostic factors in patients surgically treated for non-small cell lung cancer. Advances in Respiratory Medicine. 2008;76(5) PubMed