Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia patients are reflected in the activation of circumjacent pathways upon DNA damage
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36334078
PubMed Central
PMC9812841
DOI
10.1002/1878-0261.13337
Knihovny.cz E-zdroje
- Klíčová slova
- CLL, p53, phosphorylation,
- MeSH
- ATM protein genetika metabolismus MeSH
- chronická lymfatická leukemie * genetika MeSH
- doxorubicin farmakologie MeSH
- fosforylace MeSH
- geny p53 MeSH
- hypoxie genetika MeSH
- lidé MeSH
- nádorový supresorový protein p53 * metabolismus MeSH
- poškození DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATM protein MeSH
- doxorubicin MeSH
- nádorový supresorový protein p53 * MeSH
TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.
Zobrazit více v PubMed
Horn HF, Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene. 2007;26:1306–16. 10.1038/sj.onc.1210263 PubMed DOI
Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ, et al. Phosphorylation site interdependence of human p53 post‐translational modifications in response to stress. J Biol Chem. 2003;278:37536–44. 10.1074/jbc.M305135200 PubMed DOI
Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. 2009;1:a000950. 10.1101/cshperspect.a000950 PubMed DOI PMC
Pospíšilová Š, Brázda V, Kuchaříková K, Luciani MG, Hupp TR, Skládal P, et al. Activation of the DNA‐binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem J. 2004;378:939–47. 10.1042/BJ20030662 PubMed DOI PMC
Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24:5835–43. 10.1128/mcb.24.13.5835-5843.2004 PubMed DOI PMC
Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26:1458–61. 10.1038/leu.2012.25 PubMed DOI
Mato AR, Hill BT, Lamanna N, Barr PM, Ujjani CS, Brander DM, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017;28:1050–6. 10.1093/annonc/mdx031 PubMed DOI
Furth N, Ben‐Moshe NB, Pozniak Y, Porat Z, Geiger T, Domany E, et al. Down‐regulation of LATS kinases alters p53 to promote cell migration. Genes Dev. 2015;29:2325–30. 10.1101/gad.268185.115 PubMed DOI PMC
Hallek M, Cheson BD, Catovsky D, Caligaris‐Cappio F, Dighiero G, Döhner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updating the National Cancer Institute‐working group 1996 guidelines. Blood. 2008;111:5446–56. 10.1182/blood-2007-06-093906 PubMed DOI PMC
Rosén A, Bergh AC, Gogolák P, Evaldsson C, Myhrinder AL, Hellqvist E, et al. Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Onco Targets Ther. 2012;1:18–27. 10.4161/onci.1.1.18400 PubMed DOI PMC
Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky M, Bikos V, et al. Multiple productive IGH rearrangements denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia. 2018;32:234–6. 10.1038/leu.2017.274 PubMed DOI PMC
Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, et al. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica. 2014;99:329–38. 10.3324/haematol.2013.087593 PubMed DOI PMC
Malcikova J, Stano‐Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N, et al. Detailed analysis of therapy‐driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29:877–85. 10.1038/leu.2014.297 PubMed DOI PMC
Pavlova S, Smardova J, Tom N, Trbusek M. Detection and functional analysis of TP53 mutations in CLL. Methods Mol Biol. 2019;1881:63–81. 10.1007/978-1-4939-8876-1_6 PubMed DOI
Navrkalova V, Plevova K, Hynst J, Pal K, Mareckova A, Reigl T, et al. LYmphoid NeXt‐generation sequencing (LYNX) panel: a comprehensive capture‐based sequencing tool for the analysis of prognostic and predictive markers in lymphoid malignancies. J Mol Diagn. 2021;23:959–74. 10.1016/j.jmoldx.2021.05.007 PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Smith T, Heger A, Sudbery I. UMI‐tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27:491–9. 10.1101/gr.209601.116 PubMed DOI PMC
Wang L, Wang S, Li W. RSeQC: quality control of RNA‐seq experiments. Bioinformatics. 2012;28:2184–5. 10.1093/bioinformatics/bts356 PubMed DOI
Okonechnikov K, Conesa A, García‐Alcalde F. Qualimap 2: advanced multi‐sample quality control for high‐throughput sequencing data. Bioinformatics. 2016;32:292–4. 10.1093/bioinformatics/btv566 PubMed DOI PMC
Chu J, Sadeghi S, Raymond A, Jackman SD, Nip KM, Mar R, et al. BioBloom tools: fast, accurate and memory‐efficient host species sequence screening using bloom filters. Bioinformatics. 2014;30:3402–4. 10.1093/bioinformatics/btu558 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656 PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al. Perturbation‐response genes reveal signaling footprints in cancer gene expression. Nat Commun. 2018;9:20. 10.1038/s41467-017-02391-6 PubMed DOI PMC
Holland CH, Szalai B, Saez‐Rodriguez J. Transfer of regulatory knowledge from human to mouse for functional genomics analysis. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194431. 10.1016/J.BBAGRM.2019.194431 PubMed DOI
Garcia‐Alonso L, Holland CH, Ibrahim MM, Turei D, Saez‐Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2019;29:1363–75. 10.1101/gr.240663.118 PubMed DOI PMC
https://zenodo.org/record/3743344#.YkMHJnpByUl.
Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ. 2017;5:e3720. 10.7717/PEERJ.3720 PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv. 2013. 10.48550/arxiv.1303.3997 DOI
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9. 10.1093/BIOINFORMATICS/BTP352 PubMed DOI PMC
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4. 10.1093/BIOINFORMATICS/BTV098 PubMed DOI PMC
https://gatk.broadinstitute.org/hc/en‐us/articles/360037593851‐Mutect2.
https://github.com/Illumina/strelka.
https://github.com/AstraZeneca‐NGS/VarDict.
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122. 10.1186/S13059-016-0974-4 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. 10.1038/NBT.1754 PubMed DOI PMC
Kinoshita E, Kinoshita‐Kikuta E. Improved Phos‐tag SDS‐PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics. 2011;11:319–23. 10.1002/pmic.201000472 PubMed DOI
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. 10.1038/nprot.2008.211 PubMed DOI
Navrkalova V, Sebejova L, Zemanova J, Jaskova Z, Trbusek M. The p53 pathway induction is not primarily dependent on ataxia telangiectasia mutated (ATM) gene activity after fludarabine treatment in chronic lymphocytic leukemia cells. Leuk Lymphoma. 2013;54:1840–3. 10.3109/10428194.2013.796056 PubMed DOI
Wu B, Słabicki M, Sellner L, Dietrich S, Liu X, Jethwa A, et al. MED12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br J Haematol. 2017;179:421–9. 10.1111/BJH.14869 PubMed DOI
Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29:2223–9. 10.1200/JCO.2010.32.0838 PubMed DOI
Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54. 10.1182/blood-2014-01-546150 PubMed DOI
Cordone I, Masi S, Mauro FR, Soddu S, Morsilli O, Valentini T, et al. p53 expression in B‐cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood. 1998;91:4342–9. 10.1182/blood.v91.11.4342.411k39_4342_4349 PubMed DOI
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. 10.1038/387296a0 PubMed DOI
Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino‐terminal domain are required for transcriptional activation, binding to mdm‐2 and the adenovirus 5 E1B 55‐kD protein. Genes Dev. 1994;8:1235–46. 10.1101/gad.8.10.1235 PubMed DOI
Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage‐induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34. 10.1016/S0092-8674(00)80416-X PubMed DOI
Bellosillo B, Villamor N, Colomer D, Pons G, Montserrat E, Gil J. In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B‐cell chronic lymphocytic leukemia. Blood. 1999;94:2836–43. 10.1182/blood.v94.8.2836.420k35_2836_2843 PubMed DOI
Sturm I, Bosanquet AG, Hermann S, Güner D, Dörken B, Daniel PT. Mutation of p53 and consecutive selective drug resistance in B‐CLL occurs as a consequence of prior DNA‐damaging chemotherapy. Cell Death Differ. 2003;10:477–84. 10.1038/sj.cdd.4401194 PubMed DOI
Navrkalova V, Sebejova L, Zemanova J, Kminkova J, Kubesova B, Malcikova J, et al. ATM mutations uniformly lead to ATM dysfunction in chronic lymphocytic leukemia: application of functional test using doxorubicin. Haematologica. 2013;98:1124–31. 10.3324/haematol.2012.081620 PubMed DOI PMC
Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C. Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J. 2004;18:1906–8. 10.1096/fj.04-1918fje PubMed DOI
Gogna R, Madan E, Kuppusamy P, Pati U. Re‐oxygenation causes hypoxic tumor regression through restoration of p53 wild‐type conformation and post‐translational modifications. Cell Death Dis. 2012;3:e286. 10.1038/cddis.2012.15 PubMed DOI PMC
Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J, et al. miR‐34a, miR‐29c and miR‐17‐5p are downregulated in CLL patients with TP53 abnormalities. Leukemia. 2009;23:1159–63. 10.1038/leu.2008.377 PubMed DOI
Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53‐dependent transactivation. Mol Cell Biol. 2001;21:1297–310. 10.1128/mcb.21.4.1297-1310.2001 PubMed DOI PMC
Griggio V, Vitale C, Todaro M, Riganti C, Kopecka J, Salvetti C, et al. HIF‐1α is over‐expressed in leukemic cells from TP53‐disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia. Haematologica. 2020;105:1042–54. 10.3324/haematol.2019.217430 PubMed DOI PMC
Seiffert M. HIF‐1α: a potential treatment target in chronic lymphocytic leukemia. Haematologica. 2020;105:856–8. 10.3324/HAEMATOL.2019.246330 PubMed DOI PMC
Boehme KA, Kulikov R, Blattner C. p53 stabilization in response to DNA damage requires Akt/PKB and DNA‐PK. Proc Natl Acad Sci USA. 2008;105:7785–90. 10.1073/pnas.0703423105 PubMed DOI PMC
Willmore E, Elliott SL, Mainou‐Fowler T, Summerfield GP, Jackson GH, O'Neill F, et al. DNA‐dependent protein kinase is a therapeutic target and an indicator of poor prognosis in B‐cell chronic lymphocytic leukemia. Clin Cancer Res. 2008;14:3984–92. 10.1158/1078-0432.CCR-07-5158 PubMed DOI
Riabinska A, Daheim M, Herter‐Sprie GS, Winkler J, Fritz C, Hallek M, et al. Therapeutic targeting of a robust non‐oncogene addiction to PRKDC in ATM‐defective tumors. Sci Transl Med. 2013;5:189ra78. 10.1126/scitranslmed.3005814 PubMed DOI
Ousset M, Bouquet F, Fallone F, Biard D, Dray C, Valet P, et al. Loss of ATM positively regulates the expression of hypoxia inducible factor 1 (HIF‐1) through oxidative stress: role in the physiopathology of the disease. Cell Cycle. 2010;9:2886–94. 10.4161/cc.9.14.12253 PubMed DOI
Kämpjärvi K, Järvinen TM, Heikkinen T, Ruppert AS, Senter L, Hoag KW, et al. Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget. 2015;6:1884–8. 10.18632/ONCOTARGET.2753 PubMed DOI PMC
Guièze R, Robbe P, Clifford R, De Guibert S, Pereira B, Timbs A, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 2015;126:2110–7. 10.1182/BLOOD-2015-05-647578 PubMed DOI
Donner AJ, Szostek S, Hoover JM, Espinosa JM. CDK8 is a stimulus‐specific positive coregulator of p53 target genes. Mol Cell. 2007;27:121–33. 10.1016/J.MOLCEL.2007.05.026 PubMed DOI PMC
Klatt F, Leitner A, Kim IV, Ho‐Xuan H, Schneider EV, Langhammer F, et al. A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proc Natl Acad Sci USA. 2020;117:2894–905. 10.1073/PNAS.1917635117/SUPPL_FILE/PNAS.1917635117.SD03.XLSX PubMed DOI PMC