Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
14640983
PubMed Central
PMC1224005
DOI
10.1042/bj20030662
PII: BJ20030662
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- cyklin-dependentní kinasa 2 MeSH
- DNA chemie metabolismus MeSH
- fosforylace MeSH
- kaseinkinasa II MeSH
- kinasy CDC2-CDC28 metabolismus MeSH
- lidé MeSH
- monoklonální protilátky farmakologie MeSH
- nádorový supresorový protein p53 chemie imunologie metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteinkinasa C antagonisté a inhibitory metabolismus MeSH
- responzivní elementy MeSH
- Spodoptera cytologie MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK2 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 2 MeSH
- DNA MeSH
- kaseinkinasa II MeSH
- kinasy CDC2-CDC28 MeSH
- monoklonální protilátky MeSH
- nádorový supresorový protein p53 MeSH
- protein-serin-threoninkinasy MeSH
- proteinkinasa C MeSH
p53 is one of the most important regulators of cell proliferation and differentiation and of programmed cell death, triggering growth arrest and/or apoptosis in response to different cellular stress signals. The sequence-specific DNA-binding function of p53 protein can be activated by several different stimuli that modulate the C-terminal domain of this protein. The predominant mechanism of activation of p53 sequence-specific DNA binding is phosphorylation at specific sites. For example, phosphorylation of p53 by PKC (protein kinase C) occurs in undamaged cells, resulting in masking of the epitope recognized by monoclonal antibody PAb421, and presumably promotes steady-state levels of p53 activity in cycling cells. In contrast, phosphorylation by cdk2 (cyclin-dependent kinase 2)/cyclin A and by the protein kinase CK2 are both enhanced in DNA-damaged cells. We determined whether one mechanism to account for this mutually exclusive phosphorylation may be that each phosphorylation event prevents modification by the other kinase. We used non-radioactive electrophoretic mobility shift assays to show that C-terminal phosphorylation of p53 protein by cdk2/cyclin A on Ser315 or by PKC on Ser378 can efficiently stimulate p53 binding to DNA in vitro, as well as binding of the monoclonal antibody Bp53-10, which recognizes residues 371-380 in the C-terminus of p53. Phosphorylation of p53 by CK2 on Ser392 induces its DNA-binding activity to a much lower extent than phosphorylation by cdk2/cyclin A or PKC. In addition, phosphorylation by CK2 strongly inhibits PKC-induced activation of p53 DNA binding, while the activation of p53 by cdk2/cyclin A is not affected by CK2. The presence of CK2-mediated phosphorylation promotes PKC binding to its docking site within the p53 oligomerization domain, but decreases phosphorylation by PKC, suggesting that competition between CK2 and PKC does not rely on the inhibition of PKC-p53 complex formation. These results indicate the crucial role of p53 C-terminal phosphorylation in the regulation of its DNA-binding activity, but also suggest that antagonistic relationships exist between different stress signalling pathways.
Zobrazit více v PubMed
Cell. 1995 Jun 30;81(7):1021-9 PubMed
J Mol Biol. 1995 Apr 21;248(1):58-78 PubMed
Oncogene. 1996 Feb 15;12(4):921-30 PubMed
J Photochem Photobiol B. 1996 Aug;35(1-2):45-52 PubMed
Nucleic Acids Res. 1996 Sep 15;24(18):3560-7 PubMed
J Biol Chem. 1996 Nov 15;271(46):29380-5 PubMed
Oncogene. 1999 Nov 1;18(45):6145-57 PubMed
Oncogene. 1999 Dec 13;18(53):7644-55 PubMed
FEBS Lett. 2000 Jan 21;466(1):91-5 PubMed
Biochem Biophys Res Commun. 2000 Jan 27;267(3):934-9 PubMed
J Immunol Methods. 2000 Apr 3;237(1-2):51-64 PubMed
J Mol Biol. 2000 Jul 14;300(3):503-18 PubMed
Nature. 2000 Nov 16;408(6810):307-10 PubMed
J Cell Biochem. 2001;81(1):172-83 PubMed
EMBO Rep. 2001 Feb;2(2):139-44 PubMed
J Biol Chem. 2001 Apr 20;276(16):12654-9 PubMed
J Biol Chem. 2001 May 11;276(19):15650-8 PubMed
Eur J Biochem. 2001 May;268(10):2763 PubMed
J Biol Chem. 2001 Feb 16;276(7):4699-708 PubMed
Oncogene. 2001 Jun 7;20(26):3341-7 PubMed
Oncogene. 2001 Jun 21;20(28):3597-608 PubMed
Folia Biol (Praha). 2001;47(4):148-51 PubMed
Br J Cancer. 2001 Dec 14;85(12):1813-23 PubMed
Biochemistry. 2002 Jan 8;41(1):170-8 PubMed
J Immunol Methods. 2002 Sep 15;267(2):227-35 PubMed
J Mol Biol. 2002 Oct 4;322(5):917-27 PubMed
J Biol Chem. 2003 Apr 11;278(15):13431-41 PubMed
EMBO Rep. 2003 Aug;4(8):787-92 PubMed
Mol Cell Biol. 2003 Dec;23(23):8846-61 PubMed
J Cell Sci. 1992 Jan;101 ( Pt 1):183-9 PubMed
J Immunol Methods. 1992 Jul 6;151(1-2):237-44 PubMed
J Invest Dermatol. 1992 Aug;99(2):221-6 PubMed
Cell. 1992 Nov 27;71(5):875-86 PubMed
Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11627-31 PubMed
Cell Growth Differ. 1994 Mar;5(3):329-40 PubMed
Oncogene. 1994 Nov;9(11):3249-57 PubMed
J Biol Chem. 1994 Nov 25;269(47):29579-87 PubMed
Curr Biol. 1994 Oct 1;4(10):865-75 PubMed
J Biol Chem. 1995 Mar 10;270(10):5405-11 PubMed
Eur J Biochem. 1997 May 1;245(3):684-92 PubMed
Biochemistry. 1997 Aug 19;36(33):10117-24 PubMed
Cell. 1997 Aug 22;90(4):595-606 PubMed
Mol Cell Biol. 1997 Oct;17(10):5923-34 PubMed
Mol Cell Biol. 1997 Nov;17(11):6255-64 PubMed
Mol Cell Biol. 1997 Dec;17(12):7220-9 PubMed
Oncogene. 1997 Oct;15(18):2201-9 PubMed
Biochem Biophys Res Commun. 1998 Apr 17;245(2):514-8 PubMed
Nat Genet. 1998 Jun;19(2):175-8 PubMed
Oncol Res. 1998;10(2):55-7 PubMed
Oncogene. 1998 Aug 27;17(8):1045-52 PubMed
Mol Cell Biochem. 1999 Jan;191(1-2):111-20 PubMed
FEBS Lett. 1999 Mar 26;447(2-3):160-6 PubMed
J Biol Chem. 1995 Jul 28;270(30):18165-74 PubMed
Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa
Evidence for allosteric effects on p53 oligomerization induced by phosphorylation