Enzyme-Linked Electrochemical Detection of PCR-Amplified Nucleotide Sequences Using Disposable Screen-Printed Sensors. Applications in Gene Expression Monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27879703
PubMed Central
PMC3681127
DOI
10.3390/s8010193
PII: s8010193
Knihovny.cz E-zdroje
- Klíčová slova
- DNA hybridization, PCR, electrochemical detection, enzyme-linked assay, gene expression, primer extension,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electrochemical enzyme-linked techniques for sequence-specific DNA sensingare presented. These techniques are based on attachment of streptavidin-alkalinephosphatase conjugate to biotin tags tethered to DNA immobilized at the surface ofdisposable screen-printed carbon electrodes (SPCE), followed by production andelectrochemical determination of an electroactive indicator, 1-naphthol. Via hybridizationof SPCE surface-confined target DNAs with end-biotinylated probes, highly specificdiscrimination between complementary and non-complementary nucleotide sequences wasachieved. The enzyme-linked DNA hybridization assay has been successfully applied inanalysis of PCR-amplified real genomic DNA sequences, as well as in monitoring of planttissue-specific gene expression. In addition, we present an alternative approach involvingsequence-specific incorporation of biotin-labeled nucleotides into DNA by primerextension. Introduction of multiple biotin tags per probe primer resulted in considerableenhancement of the signal intensity and improvement of the specificity of detection.
Zobrazit více v PubMed
Fojtova M., Bleys A., Bedrichova J., Van Houdt H., Krizova K., Depicker A., Kovarik A. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res. 2006;34:2280–2293. PubMed PMC
[(December 26, 2007)]. http://www.protocol-online.org/prot/Immunology/ELISA/
Jagelska E., Brazda V., Pospisilova S., Vojtesek B., Palecek E. New ELISA technique for analysis of p53 protein/DNA binding properties. J. Immunol. Methods. 2002;267:227–235. PubMed
Pospisilova S., Brazda V., Kucharikova K., Luciani M.G., Hupp T.R., Skladal P., Palecek E., Vojtesek B. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem. J. 2004;378:939–947. PubMed PMC
Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B. Investigations of the supercoil-selective DNA binding of wild type p53 suggest a novel mechanism for controlling p53 function. Eur. J. Biochem. 2004;271:3865–3876. PubMed
Aytur T., Foley J., Anwar M., Boser B., Harris E., Beatty P.R. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods. 2006;314:21–29. PubMed
Palecek E., Kizek R., Havran L., Billova S., Fojta M. Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor. Anal. Chim. Acta. 2002;469:73–83.
Wang J., Liu G.D., Jan M.R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 2004;126:3010–3011. PubMed
Wang J., Liu G.D., Munge B., Lin L., Zhu Q.Y. DNA-based amplified bioelectronic detection and coding of proteins. Angew. Chem. Int. Ed. 2004;43:2158–2161. PubMed
Zacco E., Pividori M.I., Alegret S. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal. Chem. 2006;78:1780–1788. PubMed
Azek F., Grossiord C., Joannes M., Limoges B., Brossier P. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA. Anal. Biochem. 2000;284:107–113. PubMed
Caruana D.J., Heller A. Enzyme- amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-um-diameter microelectrode. J. Am. Chem. Soc. 1999;121:769–774.
Fojta M., Brazdilova P., Cahova K., Pecinka P. A single-surface electrochemical biosensor for the detection of DNA triplet repeat expansion. Electroanalysis. 2006;18:141–151.
Fojta M., Havran L., Vojtiskova M., Palecek E. Electrochemical Detection of DNA Triplet Repeat Expansion. J.Am. Chem. Soc. 2004;126:6532–6533. PubMed
Wang J., Xu D.K., Erdem A., Polsky R., Salazar M.A. Genomagnetic electrochemical assays of DNA hybridization. Talanta. 2002;56:931–938. PubMed
Patolsky F., Lichtenstein A., Willner I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem-Eur. J. 2003;9:1137–1145. PubMed
Wang J., Kawde A.N., Musameh M., Rivas G. Dual enzyme electrochemical coding for detecting DNA hybridization. Analyst. 2002;127:1279–1282. PubMed
Pividori M.I., Merkoci A., Barbe J., Alegret S. PCR-genosensor rapid test for detecting Salmonella. Electroanalysis. 2003;15:1815–1823.
Keen-Kim D., Redman J.B., Alanes R.U., Eachus M.M., Wilson R.C., New M.I., Nakamoto J.M., Fenwick R.G. Validation and clinical application of a locus-specific polymerase chain reaction- and minisequencing-based assay for congenital adrenal hyperplasia (21-hydroxylase deficiency) J. Mol. Diagn. 2005;7:236–246. PubMed PMC
Shumaker J.M., Tollet J.J., Filbin K.J., Montague-Smith M.P., Pirrung M.C. APEX disease gene resequencing: mutations in exon 7 of the p53 tumor suppressor gene. Bioorg. Med. Chem. 2001;9:2269–2278. PubMed
Brazdilova P., Vrabel M., Pohl R., Pivonkova H., Havran L., Hocek M., Fojta M. Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chem-Eur. J. 2007;13:9527–9533. PubMed
Brazill S.A., Kuhr W.G. A single base extension technique for the analysis of known mutations utilizing capillary gel electrophoreisis with electrochemical detection. Anal. Chem. 2002;74:3421–3428. PubMed
Di Giusto D.A., Wlassoff W.A., Giesebrecht S., Gooding J.J., King G.C. Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers. J. Am. Chem. Soc. 2004;126:4120–4121. PubMed
Wlassoff W.A., King G.C. Ferrocene conjugates of dUTP for enzymatic redox labelling of DNA. Nucleic Acids Res. 2002;30 PubMed PMC
Cahova H., Havran L., Brazdilova P., Pivonkova H., Pohl R., Fojta M., Hocek M. Aminophenyl- and Nitrophenyl-Labeled Nucleoside Triphosphates. Synthesis, Enzymatic Incorporation and Electrochemical Detection. Angew. Chem. Int. Ed. 2008 in press. PubMed
Wang J., Palecek E., Nielsen P.E., Rivas G., Cai X.H., Shiraishi H., Dontha N., Luo D., Farias P.A.M. Peptide nucleic acid probes for sequence-specific DNA biosensors. J. Am. Chem. Soc. 1996;118:7667–7670.
Erdem A., Kerman K., Meric B., Akarca U.S., Ozsoz M. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal. Chim. Acta. 2000;422:139–149.
Palecek E., Fojta M. Electrochemical DNA Sensors. In: Wilner I., Katz E., editors. Bioelectronics. Wiley VCH; Weinheim: 2005. pp. 127–192.
Tarlov M.J., Steel A.B. DNA-Based Sensors. In: Rusling J.F., editor. Biomolecular Films. Design, Function, and Applications. Marcel Dekker; New York: 2003. pp. 545–608.
Cai X., Rivas G., Shiraishi H., Farias P., Wang J., Tomschik M., Jelen F., Palecek E. Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces. Anal. Chim. Acta. 1997;344:64–76.
Kerman K., Ozkan D., Kara P., Karadeniz H., Ozkan Z., Erdem A., Jelen F., Ozsoz M. Electrochemical detection of specific DNA sequences from PCR amplicons on carbon and mercury electrodes using Meldola's Blue as an intercalator. Turkish J. Chem. 2004;28:523–533.
Davis E.G., Chao C., McMasters K.M. Polymerase chain reaction in the staging of solid tumors. Cancer J. 2002;8:135–143. PubMed
Raj G.V., Moreno J.G., Gomella L.G. Utilization of polymerase chain reaction technology in the detection of solid tumors. Cancer. 1998;82:1419–1442. PubMed
Dotsch J., Repp R., Rascher W., Christiansen H. Diagnostic and scientific applications of TaqMan real-time PCR in neuroblastomas. Expert Rev. Mol. Diagn. 2001;1:233–238. PubMed
Provenzano M., Mocellin S. Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv. Exp. Med. Biol. 2007;593:66–73. PubMed
Gruissen W., Barkan A., Deng X.W., Stern D. Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet. 1988;4:258–263. PubMed
Palecek E., Fojta M., Jelen F., Vetterl V. Electrochemical analysis of nucleic acids. In: Bard A.J., Stratsmann M., editors. The Encyclopedia of Electrochemistry. Wiley-VCH; Weinheim: 2002. pp. 365–429.
Palecek E., Jelen F. Electrochemistry of nucleic acids. In: Palecek E., Scheller F., Wang J., editors. Electrochemistry of nucleic acids and proteins. Towards electrochemical sensors for genomics and proteomics. Elsevier; Amsterdam: 2005. pp. 74–174.
Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell line as a ″HeLa″ cell in the cell biology of higher plants. Int. Rev. Cytol. 1992;132:1–30.
Hupp T.R., Meek D.W., Midgley C.A., Lane D.P. Regulation of the specific DNA binding function of p53. Cell. 1992;71:875–886. PubMed
Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology