The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco

. 2006 ; 34 (8) : 2280-93. [epub] 20060502

Jazyk angličtina Země Anglie, Velká Británie Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16670434

We studied the in trans-silencing capacities of a transgene locus that carried the neomycin phosphotransferase II reporter gene linked to the 35S promoter in an inverted repeat (IR). This transgene locus was originally posttranscriptionally silenced but switched to a transcriptionally silenced epiallele after in vitro tissue culture. Here, we show that both epialleles were strongly methylated in the coding region and IR center. However, by genomic sequencing, we found that the 1.0 kb region around the transcription start site was heavily methylated in symmetrical and non-symmetrical contexts in transcriptionally but not in posttranscriptionally silenced epilallele. Also, the posttranscriptionally silenced epiallele could trans-silence and trans-methylate homologous transgene loci irrespective of their genomic organization. We demonstrate that this in trans-silencing was accompanied by the production of small RNA molecules. On the other hand, the transcriptionally silenced variant could neither trans-silence nor trans-methylate homologous sequences, even after being in the same genetic background for generations and meiotic cycles. Interestingly, 5-aza-2-deoxy-cytidine-induced hypomethylation could partially restore signaling from the transcriptionally silenced epiallele. These results are consistent with the hypothesis that non-transcribed highly methylated IRs are poor silencers of homologous loci at non-allelic positions even across two generations and that transcription of the inverted sequences is essential for their trans-silencing potential.

Zobrazit více v PubMed

Vaucheret H., Fagard M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 2001;17:29–35. PubMed

Vaucheret H., Béclin C., Fagard M. Post-transcriptional gene silencing in plants. J. Cell Sci. 2001;114:3083–3091. PubMed

Mette M.F., van der Winden J., Matzke M.A., Matzke A.J.M. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 1999;18:241–248. PubMed PMC

Sijen T., Vijn I., Rebocho A., van Blokland R., Roelofs D., Mol J.N.M., Kooter J.M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 2001;11:436–440. PubMed

Garrick D., Fiering S., Martin D.I.K., Whitelaw E. Repeat-induced gene silencing in mammals. Nature Genet. 1998;18:56–59. PubMed

Finnegan E.J., Genger R.K., Peacock W.J., Dennis E.S. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:223–247. PubMed

Stam M., Viterbo A., Mol J.N.M., Kooter J.M. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: Implications for posttranscriptional silencing of homologous host genes in plants. Mol. Cell Biol. 1998;18:6165–6177. PubMed PMC

Matzke M.A., Mette M.F., Matzke A.J.M. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 2000;43:401–415. PubMed

De Buck S., Depicker A. Disruption of their palindromic arrangement leads to selective loss of DNA methylation in inversely repeated gus transgenes in Arabidopsis. Mol. Genet. Genomics. 2001;265:1060–1068. PubMed

De Buck S., Van Montagu M., Depicker A. Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol. Biol. 2001;46:433–445. PubMed

Matzke M.A., Matzke A.J.M., Pruss G.J., Vance V.B. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 2001;11:221–227. PubMed

Chandler V.L., Stam M. Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet. 2004;5:532–544. PubMed

Pélissier T., Thalmeir S., Kempe D., Sänger H.L., Wassenegger M. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res. 1999;27:1625–1634. PubMed PMC

Luff B., Pawlowski L., Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell. 1999;3:505–511. PubMed

Meza T.J., Stangeland B., Mercy I.S., Skårn M., Nymoen D.A., Berg A., Butenko M.A., Håkelien A.M., Haslekås C., Meza-Zepeda L.A., et al. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res. 2002;30:4556–4566. PubMed PMC

Lechtenberg B., Schubert D., Forsbach A., Gils M., Schmidt R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 2003;34:507–517. PubMed

Fojtová M., Van Houdt H., Depicker A., Kovařík A. Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 2003;133:1240–1250. PubMed PMC

Van Houdt H., Van Montagu M., Depicker A. Both sense and antisense RNAs are targets for the sense transgene-induced posttranscriptional silencing mechanism. Mol. Gen. Genet. 2000;263:995–1002. PubMed

Van Houdt H., Kovařík A., Van Montagu M., Depicker A. Cross-talk between posttranscriptionally silenced neomycin phosphotransferase II transgenes. FEBS Lett. 2000;467:41–46. PubMed

Ingelbrecht I., Van Houdt H., Van Montagu M., Depicker A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl Acad. Sci. USA. 1994;91:10502–10506. PubMed PMC

Van Houdt H., Ingelbrecht I., Van Montagu M., Depicker A. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3′ flanking regions. Plant J. 1997;12:379–392.

Koukalová B., Reich J., Matyásek R., Kuhrova V., Bezdek M. A BamHI family of highly repeated DNA-sequences of Nicotiana tabacum. Theor. Appl. Genet. 1989;78:77–80. PubMed

Kovařík A., Van Houdt H., Holý A., Depicker A. Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett. 2000;467:47–51. PubMed

Grunau C., Schattevoy R., Mache N., Rosenthal A. MethTools—a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res. 2000;28:1053–1058. PubMed PMC

Hamilton A.J., Baulcombe D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286:950–952. PubMed

Mette M.F., Aufsatz W., van der Winden J., Matzke M.A., Matzke A.J.M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194–5201. PubMed PMC

Matzke M.A., Matzke A.J., Pruss G.J., Vance V.B. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 2001;11:221–227. PubMed

Van Houdt H., Bleys A., Depicker A. RNA target sequences promote spreading of RNA silencing. Plant Physiol. 2003;131:245–253. PubMed PMC

Hamilton A., Voinnet O., Chappell L., Baulcombe D. Two classes of short interfering RNA in RNA silencing. EMBO J. 2002;21:4671–4679. PubMed PMC

Han Y., Grierson D. The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol. Genet. Genomics. 2002;267:629–635. PubMed

Vyskot B., Koukalová B., Kovařík A., Sachambula L., Reynolds D., Bezdek M. Meiotic transmission of a hypomethylated repetitive DNA family in tobacco. Theor. Appl. Genet. 1995;91:659–664. PubMed

Park Y.D., Papp I., Moscone E.A., Iglesias V.A., Vaucheret H., Matzke A.J.M., Matzke M.A. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996;9:183–194. PubMed

Meyer P., Niedenhof I., ten Lohuis M. Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J. 1994;13:2084–2088. PubMed PMC

Amedeo P., Habu Y., Afsar K., Mittelstend Scheid O., Paszkowski J. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature. 2000;405:203–206. PubMed

Lam E., Benfey P.N., Gilmartin P.M., Fang R.X., Chua N.H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl Acad. Sci. USA. 1989;86:7890–7894. PubMed PMC

Selker E.U. Gene silencing: repeats that count. Cell. 1999;97:157–160. PubMed

Wassenegger M. RNA-directed DNA methylation. Plant Mol. Biol. 2000;43:203–220. PubMed

Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., Jacobsen S.E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 2001;292:2077–2080. PubMed

Qin H., von Arnim A.G. Epigenetic history of an Arabidopsis trans-silencer locus and a test for relay of trans-silencing activity. BMC Plant Biol. 2002;2:11. PubMed PMC

Vaucheret H., Nussaume L., Palauqui J.C., Quillere I., Elmayan T. A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell. 1997;9:1495–1504. PubMed PMC

Depicker A., Ingelbrecht I., Van Houdt H., De Loose M., Van Montagu M. Post-transcriptional reporter transgene silencing in transgenic tobacco. In: Grierson D., Lycett G. W., Tucker G. A., editors. Mechanisms and Applications of Gene Silencing. Nottingham, UK: Nottingham University Press;

Mishiba K., Nishihara M., Nakatsuka T., Abe Y., Hirano H., Yokoi T., Kikuchi A., Yamamura S. Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J. 2005;44:541–556. PubMed

Jones L., Ratcliff F., Baulcombe D.F. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 2001;11:747–757. PubMed

Žluvová J., Janoušek B., Vyskot B. Immunohistochemical study of DNA methylation dynamics during plant development. J. Exp. Bot. 2001;52:2265–2273. PubMed

Steimer A., Schob H., Grossniklaus U. Epigenetic control of plant development: new layers of complexity. Curr. Opin. Plant. Biol. 2004;7:11–19. PubMed

Kovařík A., Koukalová B., Bezděk M., Opatrný Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor. Appl. Genet. 1997;95:301–306.

Labra M., Vannini C., Sala E., Bracale M. Methylation changes in specific sequences in response to water deficit. Plant Biosyst. 2002;136:269–275.

Labra M., Ghiani A., Citterio S., Sgorbati S., Sala F., Vannini C., Ruffini-Castiglione M., Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 2002;4:694–699.

Kaeppler S.M., Kaeppler H.F., Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 2000;43:179–188. PubMed

Chandler V.L., Vaucheret H. Gene activation and gene silencing. Plant Physiol. 2001;125:145–148. PubMed PMC

Matzke M., Mette M.F., Jakowitsch J., Kanno T., Moscone E.A., van der Winden J., Matzke A.J. A test for transvection in plants: DNA pairing may lead to trans-activation or silencing of complex heteroalleles in tobacco. Genetics. 2001;158:451–461. PubMed PMC

Kunz C., Narangayavana J., Jakowitsch J., Park Y.-D., Delon T.R., Kovařík A., Koukalová B., van der Winden J., Mette M.F., Aufsatz W., et al. Studies on the effects of a flanking repetitive sequence on the expression of single copy transgenes in Nicotiana sylvestris and in N. sylvestris–N. tomentosiformis hybrids. Plant Mol. Biol. 2003;52:203–215. PubMed

Eike M.C., Mercy I.S., Aalen R.B. Transgene silencing may be mediated by aberrant sense promoter transcripts generated from cryptic promoters. Cell. Mol. Life Sci. 2005;62:3080–3091. PubMed PMC

Mittelsten Scheid O., Afsar K., Paszkowski J. Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat. Genet. 2003;34:450–454. PubMed

Grant-Downton R.T., Dickinson H.G. Plants, pairing and phenotypes–two's company? Trends Genet. 2004;20:188–195. PubMed

Stam M., de Bruin R., van Blokland R., van der Hoorn R.A.L., Mol J.N.M., Kooter J.M. Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. Plant J. 2000;21:27–42. PubMed

Melquist S., Bender J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev. 2003;17:2036–2047. PubMed PMC

Matzke M., Gregor W., Mette M.F., Aufsatz W., Kanno T., Jakowitsch J., Matzke A.J.M. Endogenous pararetroviruses of allotetraploid Nicotiana tabacum and its diploid progenitors, N. sylvestris and N. tomentosiformis. Biol. J. Linn. Soc. 2004;82:627–638.

Vance V.B., Vaucheret H. RNA silencing in plants—Defence and counterdefence. Science. 2001;292:2277–2280. PubMed

Murad L., Lim K.Y., Christopodulou V., Matyášek R., Lichtenstein C.P., Kovařík A., Leitch A.R. The origin of tobacco's T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae) Am. J. Bot. 2002;89:921–928. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pervasive read-through transcription of T-DNAs is frequent in tobacco BY-2 cells and can effectively induce silencing

. 2018 Oct 22 ; 18 (1) : 252. [epub] 20181022

Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture

. 2013 Jun ; 8 (6) : 666-76. [epub] 20130426

Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing

. 2011 May ; 6 (5) : 650-60. [epub] 20110501

Faithful inheritance of cytosine methylation patterns in repeated sequences of the allotetraploid tobacco correlates with the expression of DNA methyltransferase gene families from both parental genomes

. 2009 Apr ; 281 (4) : 407-20. [epub] 20090109

Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles

. 2009 Mar ; 149 (3) : 1493-504. [epub] 20090107

Enzyme-Linked Electrochemical Detection of PCR-Amplified Nucleotide Sequences Using Disposable Screen-Printed Sensors. Applications in Gene Expression Monitoring

. 2008 Jan 21 ; 8 (1) : 193-210. [epub] 20080121

Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana

. 2007 Nov ; 278 (5) : 565-73. [epub] 20070802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...